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Contextual word representations:
Overview
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Associated materials

Notebook: finetuning.ipynb
Smith 2019

Transformers
1. Vaswani et al. 2017

2. Alexander Rush: The Annotated Transformer [link]

Hugging Face transformers: project site
BERT: Devlin et al. 2019; project site
RoBERTa: Liu et al. 2019; project site
ELECTRA: Clark et al. 2019; project site

2/11


http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://github.com/huggingface/transformers
https://github.com/google-research/bert
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://github.com/google-research/electra
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Word representations and context

1. a.
b.
C.
d.
e.
f.
g.
h.
2. a.
b.
3. a.
b.
C.
4, a.
b.

The vase broke.

Dawn broke.

The news broke.

Sandy broke the world record.

Sandy broke the law.

The burgler broke into the house.

The newscaster broke into the movie broadcast.
We broke even.

flat tire/beer/note/surface
throw a party/fight/ball/fit

A crane caught a fish.
A crane picked up the steel beam.
| saw a crane.

Are there typos? | didn’t see any.
Are there bookstores downtown? | didn't see any.

Others
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Model structure and linguistic structure

TfT 111

attention
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Guiding idea: Attention

classifier  y = softmax(hW + b)
attention combo A = tanh([k; hc]Wk)
context k =mean ([a1h1, azxh3, ashs3])

attention weights o = softmax(&)

scores &:[hghl hzhz hgh3]

36 45

really not SO good

Others
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Guiding idea: Word pieces
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[5]:

[6]:

[6]:

from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
tokenizer.tokenize("This isn't too surprising.")

['This', 'isn', "'", 't', 'too', 'surprising', '.']
tokenizer.tokenize("Encode me!")

['En', '##code', 'me', '!']

tokenizer.tokenize ("Snuffleupagus?")

['S', '##nu', '##ffle', '##up', '##agu', '##s', '7']
tokenizer.vocab_size

28996

Sennrich et al. 2016,
https://github.com/google/sentencepiece
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Guiding idea: Positional encoding
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Xa7 X30 X34
The Rock rules
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Current issues and efforts

90
[

RoBERTa
3 zettaflops
XLNet
o g BERT-Large
15} ERT-Base 790 exaflops
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o GPT
GloVE
1 exaflop

60

Floating Point Operations required for training

Clark et al. 2019
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Mikel Artetxe v
@artetxem

Who said that training GPT-2 or BERT was expensive?

"We use 512 Nvidia V100 GPUs [...] Upon the
submission of this paper, training has lasted for three
months [...] and perplexity on the development set is still
dropping.”

(o] pen Large-scale Pretraining for Neural Machine Translation with...
z In this paper, we investigate the problem of training neural
LVl . ninion (W) sy wih & ctaset f more .
& openreview.net

3112 PM - Sep 30, 2019 - Twitter for Android
4Retweets 17 Likes

) u Q

&3

Kris Cao @kroscoo - 14m v
Replying to @artetxem
It seems even the authors have limits:

"A completely fair comparison would be to use an ensemble of 20 single-
model, each of which is trained on
the 40B dataset. But this is very computationally prohibitive for us."

o e (VA &

Current issues and efforts

Others

https://twitter.com/artetxem/status/1178794889229864962

8/11


https://twitter.com/artetxem/status/1178794889229864962

Materials

Context

Current issues and efforts

Table 1: Estimated COy emissions from training com-
mon NLP models, compared to familiar consumption.!

Strubell et al. 2019

Structure Attention Word pieces Positional encoding Current issues and efforts Others
Consumption COze (Ibs)
Air travel, 1 person, NY <+ SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000
Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experiments 78,468
Transformer (big) 192
w/ neural arch. search 626,155
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Transformers

L Back to home

All Models and checkpoints

Also check out our list of Community contributors ¥ and
Organizations @.

Search models Tags:All+ | Sort: Default +
Filtr by modeltags

DeepPaviov/be
v Al

Deopraviov/bt  pyroy

Deeppaviov/ba  TensorFlow

Deeppaviov/ed  French i
German ==
Deeppaviov/ey
Dutch =
DospPaviov/cd  aiantd

Kb/albert-bag  Spanish &R

Swedish £2
KB/bert-base-

Finnish =
KB/bert-base~

Greek B

Musixmatch/un  Turkish B

Musixmatch/un  Arabic B

Chinese
TurkuNLP/bert

Malay B3
‘TurkuNLP/bert

Polish s

ahotrod/alber  Esperanto

anotroa/siney  Miltingal @

https://huggingface.co
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Compressing Large-Scale Transformer-Based Models: A Case Study on BERT

Prakhar Ganesh', Yao Chen', Xin Lou', Mohammad Ali Khan', Yin Yang”,
Deming Chen®, Marianne Winslett’, Hassan Sajjad’? and Preslav Nakov'?

! Advanced Digital Sciences Center

?Hamad Bin Khalifa University
SUniversity of Illinois at Urbana-Champaign
“Qatar Computing Research Institute
{prakhar.g, yao.chen, lou.xin, mot d.k} @adsc-create.edu.sg
{yyang, hsajjad, pnakov} @hbku.edu.qa, {dchen, winslett} @illinois.edu

Mitchell A. Gordon About Blog Bookshelf

All The Ways You Can Compress BERT

Nov 18, 2019

Model compression reduces redundancy in a trained neural network. This is useful, since BERT barely
fits on a GPU (BERT-Large does not) and definitely won't fit on your smart phone. Improved memory
and inference speed efficiency can also save costs at scale.

Others

http://mitchgordon.me/
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A Primer in BERTology: What we know about how BERT works

Anna Rogers, Olga Kovaleva, Anna Rumshisky
Department of Computer Science, University of Massachusetts Lowell
Lowell, MA 01854
{arogers, okovalev, arum}@cs.uml.edu
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Some other Transformer-based models

SBERT (Sentence-BERT; Reimers and Gurevych 2019)
Generative Pre-trained Transformer

» GPT (Radford et al. 2018)
» GPT-2 (Radford et al. 2019)
» GPT-3 (Brown et al. 2020)

XLNet (Xtra Long Transfromer: Yang et al. 2019
T5 (Text-To-Text Transfer Transformer; Raffel et al. 2019)
BART: Devlin et al. 2019
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