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Associated materials

• Notebook: finetuning.ipynb

• Smith 2019

• Transformers
1. Vaswani et al. 2017

2. Alexander Rush: The Annotated Transformer [link]

• Hugging Face transformers: project site

• BERT: Devlin et al. 2019; project site

• RoBERTa: Liu et al. 2019; project site

• ELECTRA: Clark et al. 2019; project site
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http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://github.com/huggingface/transformers
https://github.com/google-research/bert
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://github.com/google-research/electra
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Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.

g. The newscaster broke into the movie broadcast.
h. We broke even.

2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit

3. a. A crane caught a fish.
b. A crane picked up the steel beam.
c. I saw a crane.

4. a. Are there typos? I didn’t see any.
b. Are there bookstores downtown? I didn’t see any.
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Model structure and linguistic structure
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Guiding idea: Attention

classifier y = softmax(h̃W+ b)

attention combo h̃ = tanh([κ;hC]Wκ)

context κ =mean ([α1h1, α2h2, α3h3])

attention weights α = softmax(α̃)

scores α̃ =
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Guiding idea: Word pieces
iQF2MBxBM;

J�`+? ke- kyky

(R), 7`QK i`�Mb7Q`K2`b BKTQ`i "2`ihQF2MBx2`

(k), iQF2MBx2` 4 "2`ihQF2MBx2`X7`QKnT`2i`�BM2/U^#2`i@#�b2@+�b2/^V

(j), iQF2MBx2`XiQF2MBx2U]h?Bb BbM^i iQQ bm`T`BbBM;X]V

(j), (^h?Bb^- ^BbM^- ]^]- ^i^- ^iQQ^- ^bm`T`BbBM;^- ^X^)

(9), iQF2MBx2`XiQF2MBx2U]1M+Q/2 K25]V

(9), (^1M^- ^OO+Q/2^- ^K2^- ^5^)

(8), iQF2MBx2`XiQF2MBx2U]aMm77H2mT�;mb\]V

(8), (^a^- ^OOMm^- ^OO77H2^- ^OOmT^- ^OO�;m^- ^OOb^- ^\^)

(e), iQF2MBx2`XpQ+�#nbBx2

(e), k3NNe

R

6 / 11

Sennrich et al. 2016,
https://github.com/google/sentencepiece

https://github.com/google/sentencepiece
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Guiding idea: Positional encoding
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Current issues and efforts
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Figure 1: The computational demands of modern deep learning 
methods for NLP, measured in Floating Point Operations (FLOPs).
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Current issues and efforts
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https://twitter.com/artetxem/status/1178794889229864962
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Current issues and efforts
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Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
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Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)
Air travel, 1 person, NY$SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)
NLP pipeline (parsing, SRL) 39

w/ tuning & experiments 78,468
Transformer (big) 192

w/ neural arch. search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consumption:
https://bit.ly/2Hw0xWc; (2) car lifetime: https:
//bit.ly/2Qbr0w1.
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Current issues and efforts
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http://mitchgordon.me/

http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html
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A Primer in BERTology: What we know about how BERT works

Anna Rogers, Olga Kovaleva, Anna Rumshisky
Department of Computer Science, University of Massachusetts Lowell

Lowell, MA 01854
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Abstract

Transformer-based models are now widely
used in NLP, but we still do not understand a
lot about their inner workings. This paper de-
scribes what is known to date about the famous
BERT model (Devlin et al., 2019), synthesiz-
ing over 40 analysis studies. We also provide
an overview of the proposed modifications to
the model and its training regime. We then out-
line the directions for further research.

1 Introduction

Since their introduction in 2017, Transformers
(Vaswani et al., 2017) took NLP by storm, of-
fering enhanced parallelization and better model-
ing of long-range dependencies. The best known
Transformer-based model is BERT (Devlin et al.,
2019) which obtained state-of-the-art results in nu-
merous benchmarks, and was integrated in Google
search1, improving an estimated 10% of queries.

While it is clear that BERT and other
Transformer-based models work remarkably well,
it is less clear why, which limits further hypothesis-
driven improvement of the architecture. Unlike
CNNs, the Transformers have little cognitive mo-
tivation, and the size of these models limits our
ability to experiment with pre-training and perform
ablation studies. This explains a large number of
studies over the past year that attempted to under-
stand the reasons behind BERT’s performance.

This paper provides an overview of what has
been learned to date, highlighting the questions
which are still unresolved. We focus on the studies
investigating the types of knowledge learned by
BERT, where this knowledge is represented, how it
is learned, and the methods proposed to improve it.

1https://blog.google/products/search/
search-language-understanding-bert

2 Overview of BERT architecture

Fundamentally, BERT is a stack of Transformer
encoder layers (Vaswani et al., 2017) which consist
of multiple “heads”, i.e., fully-connected neural
networks augmented with a self-attention mecha-
nism. For every input token in a sequence, each
head computes key, value and query vectors, which
are used to create a weighted representation. The
outputs of all heads in the same layer are combined
and run through a fully-connected layer. Each layer
is wrapped with a skip connection and layer nor-
malization is applied after it.

The conventional workflow for BERT consists
of two stages: pre-training and fine-tuning. Pre-
training uses two semi-supervised tasks: masked
language modeling (MLM, prediction of randomly
masked input tokens) and next sentence prediction
(NSP, predicting if two input sentences are adjacent
to each other). In fine-tuning for downstream ap-
plications, one or more fully-connected layers are
typically added on top of the final encoder layer.

The input representations are computed as fol-

Figure 1: BERT fine-tuning (Devlin et al., 2019).
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Some other Transformer-based models

• SBERT (Sentence-BERT; Reimers and Gurevych 2019)
• Generative Pre-trained Transformer

É GPT (Radford et al. 2018)
É GPT-2 (Radford et al. 2019)
É GPT-3 (Brown et al. 2020)

• XLNet (Xtra Long Transfromer: Yang et al. 2019
• T5 (Text-To-Text Transfer Transformer; Raffel et al. 2019)
• BART: Devlin et al. 2019
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