
Overview Core method Probing or learning a new model? Selectivity No causal inference Unsupervised probes

Analysis methods in NLP:
Probing

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

1 / 9

http://creativecommons.org/licenses/by/4.0/


Overview Core method Probing or learning a new model? Selectivity No causal inference Unsupervised probes

Overview

1. Core idea: use supervised models (the probes) to
determine what is latently encoded in the hidden
representations of our target models.

2. Often applied in the context of BERTology – see
especially Tenney et al. 2019.

3. A source of valuable insights, but we need to proceed
with caution:
É A very powerful probe might lead you to see things

that aren’t in the target model (but rather in your
probe).

É Probes cannot tell us about whether the information
that we identify has any causal relationship with the
target model’s behavior.

4. Final section: unsupervised probes.
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Probing or learning a new model?

1. Probes in the above sense are supervised models whose
inputs are frozen parameters of the model we are
probing.

2. This is hard to distinguish from simply fitting a
supervised model as usual, with a particular choice for
featurization.

3. At least some of the information that we identify is likely
to be stored in the probe model.

4. More powerful probes might “find” more information – by
storing more information in the probe parameters.
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Control tasks and probe selectivity

Control task
A random task with the same input/output structure as the
target task.

• Word-sense classification: words assigned random fixed
senses.

• POS tagging task: words assigned random fixed tags.
• Parsing: assigned edges randomly using simple

strategies.

Selectivity
The difference between probe performance on the task and
probe performance on the control task.
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Control tasks and probe selectivity

2734

Figure 2: Selectivity is defined as the difference between
linguistic task accuracy and control task accuracy, and can
vary widely, as shown, across probes which achieve similar
linguistic task accuracies. These results taken from § 3.5.

provide insight into how representation and probe
interact to achieve high task accuracy.

Control tasks are based on the intuition that the
more a probe is able to make task output decisions
independently of the linguistic properties of a rep-
resentation, the less its accuracy on a linguistic task
necessarily reflects the properties of the representa-
tion. Thus, a good probe (one that provides insights
into the linguistic properties of a representation)
should be what we call selective, achieving high lin-
guistic task accuracy and low control task accuracy
(see Figure 2).

We show that selectivity can be a guide in
designing probes and interpreting probing results,
complementary to random representation baselines;
as of now, there is little consensus on how to design
probes. Early probing papers used linear functions
(Shi et al., 2016; Ettinger et al., 2016; Alain and
Bengio, 2016), which are still used (Bisazza and
Tump, 2018; Liu et al., 2019), but multi-layer
perceptron (MLP) probes are at least as popular
(Belinkov et al., 2017; Conneau et al., 2018; Adi
et al., 2017; Tenney et al., 2019; Ettinger et al.,
2018). Arguments have been made for “simple”
probes, e.g., that we want to find easily accessible
information in a representation (Liu et al., 2019;
Alain and Bengio, 2016). As a counterpoint
though, “complex” MLP probes have also been
suggested since useful properties might be encoded
non-linearly (Conneau et al., 2018), and they tend
to report similar trends to simpler probes anyway
(Belinkov et al., 2017; Qian et al., 2016).

We define control tasks corresponding to
English part-of-speech tagging and dependency

edge prediction, and use ELMo representations
to conduct a broad study of probe families,
hyperparameters, and regularization methods,
evaluating both linguistic task accuracy and
selectivity. We propose that selectivity be used for
building intuition about the expressivity of probes
and the properties of models, putting probing
accuracies into richer context. We find that:

1. With popular hyperparameter settings, MLP
probes achieve very low selectivity, suggest-
ing caution in interpreting how their results
reflect properties of representations. For ex-
ample, on part-of-speech tagging, 97.3 accu-
racy is achieved, compared to 92.8 control
task accuracy, resulting in 4.5 selectivity.

2. Linear and bilinear probes achieve relatively
high selectivity across a range of hyperparam-
eters. For example, a linear probe on part-of-
speech tagging achieves a similar 97.2 accu-
racy, and 71.2 control task accuracy, for 26.0
selectivity. This suggests that the small accu-
racy gain of the MLP may be explained by
increased probe expressivity.

3. The most popular method for controlling
probe complexity, dropout, does not consis-
tently lead to selective MLP probes. However,
control of MLP complexity through unintu-
itively small (10-dimensional) hidden states,
as well as small training sample sizes and
weight decay, lead to higher selectivity and
similar linguistic task accuracy.

Finally, we ask, can we meaningfully compare
the linguistic properties of layers of a model using
only linguistic task accuracy? We raise a poten-
tial problem with this approach: it fails to take
into account differences in ease of memorization
across layers. In particular, we find that while lin-
ear and MLP probes on the first layer of ELMo
(ELMo1) achieve slightly higher part-of-speech ac-
curacy than those on the second layer (ELMo2),
(97.2 compared to 96.6, for a loss of 0.6 ), the same
probes achieve much greater selectivity on ELMo2
(31.4 compared to 26.0, for a gain of 5.4). Thus,
the difference in selectivity in favor of ELMo2 is
much greater than the commonly known (Peters
et al., 2018a; Liu et al., 2019) difference in linguis-
tic task accuracy in favor of ELMo1; the difference
in accuracy may be explained by probes more eas-
ily accessing word identity features in ELMo1.
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A fundamental limitation: No causal inference
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Unsupervised probes

1. Saphra and Lopez (2019): Singular Vector Canonical
Correlation Analysis as a probing technique

2. Clark et al. (2019) and Manning et al. (2020): Inspecting
attention weights.

3. Hewitt and Manning (2019) nd Chi et al. (2020): Linear
transformations of hidden states to identify latent
syntactic structures in BERT.

4. Rogers et al. (2020): extensive discussion of probing and
related efforts and what they have revealed about BERT
representations.
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