Overview Core method Probing or learning a new model? Selectivity No causal inference Unsupervised probes

Analysis methods in NLP:
Probing

Christopher Potts
Stanford Linguistics

CS224u: Natural language understanding

1/9


http://creativecommons.org/licenses/by/4.0/

Overview

Overview

1. Core idea: use supervised models (the probes) to
determine what is latently encoded in the hidden
representations of our target models.

2. Often applied in the context of BERTology - see
especially Tenney et al. 2019.

3. A source of valuable insights, but we need to proceed
with caution:

» A very powerful probe might lead you to see things
that aren’t in the target model (but rather in your
probe).

» Probes cannot tell us about whether the information
that we identify has any causal relationship with the
target model’s behavior.

4. Final section: unsupervised probes.
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SmallLinearModel(X, y)
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Probing or learning a new model?

1. Probes in the above sense are supervised models whose
inputs are frozen parameters of the model we are
probing.

2. This is hard to distinguish from simply fitting a
supervised model as usual, with a particular choice for
featurization.

3. At least some of the information that we identify is likely
to be stored in the probe model.

4. More powerful probes might “find” more information - by
storing more information in the probe parameters.
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Control tasks and probe selectivity

Control task

A random task with the same input/output structure as the
target task.

e Word-sense classification: words assigned random fixed
senses.

e POS tagging task: words assigned random fixed tags.

e Parsing: assigned edges randomly using simple
strategies.

Selectivity

The difference between probe performance on the task and
probe performance on the control task.

Hewitt and Liang 2019
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Control tasks and probe selectivity
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A fundamental limitation: No causal inference
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1. Probe Li: it computes x +y
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A fundamental limitation: No causal inference

1. Probe Lj: it computes x +y
2. Probe Lj: it computes z
3. But neither has any impact on the output!
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Belinkov and Glass 2019; Vig et al. 2020

7/9



Overview Core method Probing or learning a new model? Selectivity No causal inference Unsupervised probes

Unsupervised probes

1. Saphra and Lopez (2019): Singular Vector Canonical
Correlation Analysis as a probing technique

2. Clark et al. (2019) and Manning et al. (2020): Inspecting
attention weights.

3. Hewitt and Manning (2019) nd Chi et al. (2020): Linear
transformations of hidden states to identify latent
syntactic structures in BERT.

4. Rogers et al. (2020): extensive discussion of probing and
related efforts and what they have revealed about BERT
representations.
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