Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

Adversarial testing

Christopher Potts

Stanford Linguistics

CS 224U: Natural language understanding May 27, 2020

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

Overview

- 1. Overview
- 2. Adversarial evaluations
- 3. Seeking hard datasets via adversarial dynamics
- 4. Analytical considerations
- 5. SNLI adversaries
- 6. MultiNLI adversaries
- 7. Other evalution ideas

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

Associated materials

- 1. Core readings: Jia and Liang 2017; Glockner et al. 2018; Naik et al. 2018; Liu et al. 2019
- 2. Auxiliary readings: Levesque 2013; Ettinger et al. 2017; Zellers et al. 2018; Nie et al. 2019b
- 3. Adversarial test datasets:
 - Glockner et al. [link]
 - Naik et al. [link]
- 4. Full adversarial datasets
 - Adversarial NLI [link]
 - SWAG [link]
 - HellaSWAG [link]
- 5. Workshops:
 - Building Linguistically Generalizable NLP Systems [link]
 - Analyzing and Interpreting Neural Networks for NLP [link]

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

Standard evaluations

- 1. Create a dataset from a single process.
- 2. Divide the dataset into disjoint train and test sets, and set the test set aside.
- 3. Develop a system on the train set.
- 4. Only after all development is complete, evaluate the system based on accuracy on the test set.
- Report the results as providing an estimate of the system's capacity to generalize.

Adversarial evaluations

- 1. Create a dataset by whatever means you like.
- 2. Develop and assess the system using that dataset, according to whatever protocols you choose.
- 3. Develop a new test dataset of examples that you suspect or know will be challenging given your system and the original dataset.
- Only after all system development is complete, evaluate the systems based on accuracy on the new test dataset.
- 5. Report the results as providing an estimate of the system's capacity to generalize.

Some things to keep in mind

Goals

The evaluation need not be adversarial per se. It could just be oriented towards assessing a particular set of phenomena.

- 1. Has my system learned anything about numerical terms?
- 2. Does my system understand how negation works?
- 3. Does my system work with a new style or genre?

The causes of failure

If a system fails an adversarial evaluation, is it a failing of the model or of the dataset used to develop the model?

Accuracy-style metrics

As stated above, the limitations of accuracy-based metrics are not addressed by the adversarial paradigm.

Adversarial evaluations

1. Overview

2. Adversarial evaluations

- 3. Seeking hard datasets via adversarial dynamics
- 4. Analytical considerations
- 5. SNLI adversaries
- 6. MultiNLI adversaries
- 7. Other evalution ideas

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

Winograd sentences

- The trophy doesn't fit into the brown suitcase because it's too small. What is too small? The suitcase / The trophy
- The trophy doesn't fit into the brown suitcase because it's too large. What is too large? The suitcase / The trophy
- The council refused the demonstrators a permit because they **feared** violence. Who **feared** violence? The council / The demonstrators
- The council refused the demonstrators a permit because they advocated violence. Who advocated violence? The council / The demonstrators

Levesque's (2013) adversarial framing

Could a crocodile run a steelechase?

"The intent here is clear. The question can be answered by thinking it through: a crocodile has short legs; the hedges in a steeplechase would be too tall for the crocodile to jump over; so no, a crocodile cannot run a steeplechase."

Foiling cheap tricks

"Can we find questions where cheap tricks like this will not be sufficient to produce the desired behaviour? This unfortunately has no easy answer. The best we can do, perhaps, is to come up with a suite of multiple-choice questions carefully and then study the sorts of computer programs that might be able to answer them."

On the Winograd NLI section of GLUE

- 1. The Winograd NLI (WNLI) section of the GLUE benchmark (Wang et al. 2018) is not adversarial in Levesque's sense.
- 2. Rather, it is a standard evaluation using examples that resemble those of the original Winograd examples.
- 3. This is not to say that it has no interest!
- 4. But I would wager that adversarial examples along the lines of Winograd sentences would prove challenging even for systems that succeeded on WNLI.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	0000000	0000000	0000	000	00	0000

SQUaD leaderboards

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph.

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Jan 10, 2020	Retro-Reader on ALBERT (ensemble) Shanghai Jiao Tong University http://arxiv.org/abs/2001.09694	90.115	92.580
2 Nov 06, 2019	ALBERT + DAAF + Verifier (ensemble) PINGAN Omni-Sinitic	90.002	92.425
3 Sep 18, 2019	ALBERT (ensemble model) Google Research & TTIC https://arxiv.org/abs/1909.11942	89.731	92.215
3 Feb 25, 2020	Albert_Verifier_AA_Net (ensemble) QIANXIN	89.743	92.180
4 Jan 23, 2020	albert+transform+verify (ensemble) qianxin	89.528	92.059
13 Nov 12, 2019	RoBERTa+Verify (single model) CW	86.448	89.586
13	BERT + ConvLSTM + MTL + Verifier (ensemble)	86,730	89.286

Rajpurkar et al. 2016

Passage

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Passage

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway

Passage

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway

Passage

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway Model: Jeff Dean

Passage

Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV. Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway

Passage

Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV. Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway Model: Jeff Dean

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

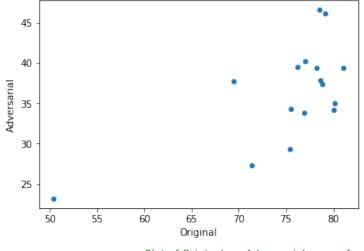
System	Original	Adversarial
ReasoNet-E	81.1	39.4
SEDT-E	80.1	35.0
BiDAF-E	80.0	34.2
Mnemonic-E	79.1	46.2
Ruminating	78.8	37.4
jNet	78.6	37.9
Mnemonic-S	78.5	46.6
ReasoNet-S	78.2	39.4
MPCM-S	77.0	40.3
SEDT-S	76.9	33.9
RaSOR	76.2	39.5
BiDAF-S	75.5	34.3
Match-E	75.4	29.4
Match-S	71.4	27.3
DCR	69.4	37.8
Logistic	50.4	23.2

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

System	Original Rank	Adversarial Rank
ReasoNet-E	1	5
SEDT-E	2	10
BiDAF-E	3	12
Mnemonic-E	4	2
Ruminating	5	9
jNet	6	7
Mnemonic-S	7	1
ReasoNet-S	8	5
MPCM-S	9	3
SEDT-S	10	13
RaSOR	11	4
BiDAF-S	12	11
Match-E	13	14
Match-S	14	15
DCR	15	8
Logistic	16	16

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	000000000	00000000	0000	000	00	0000

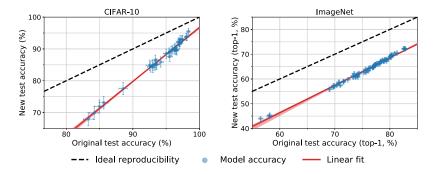
Comparison with regular testing



Plot of Original vs. Adversarial scores for SQUaD

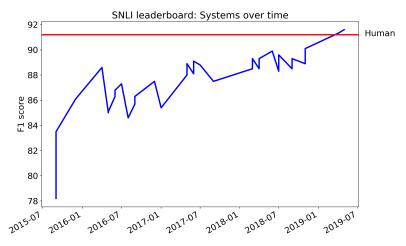
Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	000000000	0000000	0000	000	00	0000

Comparison with regular testing



Recht et al. 2019

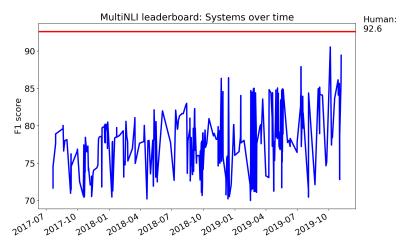
Stanford Natural Language Inference (SNLI)



Bowman et al. 2015

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	000000000	0000000	0000	000	00	0000

MultiNLI leaderboard



Williams et al. 2018

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

NLI adversarial evaluations

	Premise	Relation	Hypothesis
Train	A little aid knooling	entails	A little girl is very sad.
Adversarial	A little girl kneeling in the dirt crying.	entails	A little girl is very unhappy.
Train	An elderly couple are sitting outside a	entails	A couple drinking wine.
Adversarial	restaurant, enjoying wine.	neutral	A couple drinking champagne.

Glockner et al. 2018

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

NLI adversarial evaluations

Category	Premise	Relation	Hypothesis
Antonyms	I love the Cinderella story.	contradicts	I hate the Cinderella story.
Numerical	Tim has 350 pounds of cement in 100, 50, and 25 pound bags.	contradicts	Tim has less than 750 pounds of cement in 100, 50, and 25 pound bags.
Word overlap	Possibly no other country has had such a turbulent history.	entails	The country's history has been turbulent and true is true
Negation	Possibly no other country has had such a turbulent history.	entails	The country's history has been turbulent and false is not true

Also 'Length mismatch' and 'Spelling errors'; Naik et al. 2018

NLI adversarial evaluations

	Premise	Relation	Hypothesis		
Train	A woman is pulling a child on a sled in the snow.	entails	A shild is sitting an a		
Adversarial	A child is pulling a woman on a sled in the snow.	neutral	A child is sitting on a sled in the snow.		

Nie et al. 2019a

Seeking hard datasets via adversarial dynamics

1. Overview

- 2. Adversarial evaluations
- 3. Seeking hard datasets via adversarial dynamics
- 4. Analytical considerations
- 5. SNLI adversaries
- 6. MultiNLI adversaries
- 7. Other evalution ideas

Zellers et al. 2018; https://rowanzellers.com/swag/

Example

Zellers et al. 2018; https://rowanzellers.com/swag/

Example

• Context (given): He is throwing darts at a target.

Zellers et al. 2018; https://rowanzellers.com/swag/

Example

- Context (given): He is throwing darts at a target.
- Sentence start (given): Another man

Zellers et al. 2018; https://rowanzellers.com/swag/

Example

- Context (given): He is throwing darts at a target.
- Sentence start (given): Another man
- Continuation (predicted): throws a dart at the target board.

Example

- Context (given): He is throwing darts at a target.
- Sentence start (given): Another man
- Continuation (predicted): throws a dart at the target board.
- Distractors:

Zellers et al. 2018; https://rowanzellers.com/swag/

Example

- Context (given): He is throwing darts at a target.
- Sentence start (given): Another man
- Continuation (predicted): throws a dart at the target board.
- Distractors:
 - 1. comes running in and shoots an arrow at a target.

Example

- Context (given): He is throwing darts at a target.
- Sentence start (given): Another man
- Continuation (predicted): throws a dart at the target board.
- Distractors:
 - 1. comes running in and shoots an arrow at a target.
 - 2. is shown on the side of men.

Zellers et al. 2018; https://rowanzellers.com/swag/

Example

- Context (given): He is throwing darts at a target.
- Sentence start (given): Another man
- Continuation (predicted): throws a dart at the target board.
- Distractors:
 - 1. comes running in and shoots an arrow at a target.
 - 2. is shown on the side of men.
 - 3. throws darts at a disk.

Zellers et al. 2018; https://rowanzellers.com/swag/

SWAG: Situations With Adversarial Generations

Example

- Context (given): He is throwing darts at a target.
- Sentence start (given): Another man
- Continuation (predicted): throws a dart at the target board.
- Distractors:
 - 1. comes running in and shoots an arrow at a target.
 - 2. is shown on the side of men.
 - 3. throws darts at a disk.

Sources

- ActivityNet: 51,439 exs; 203 activity types
- Large Scale Movie Description Challenge: 62,118 exs

Zellers et al. 2018; https://rowanzellers.com/swag/

Train a model on the training data. Then, for each test example *i*:

Train a model on the training data. Then, for each test example *i*:

i The mixture creams the butter. Sugar

Train a model on the training data. Then, for each test example *i*:

- i The mixture creams the butter. Sugar
 - a. is added.
 - b. is sweet.
 - c. is in many foods.

Train a model on the training data. Then, for each test example *i*:

- *i* The mixture creams the butter. Sugar
 - a. is added. [Model correct; toss this sample]
 - b. is sweet.
 - c. is in many foods.

Train a model on the training data. Then, for each test example *i*:

- i The mixture creams the butter. Sugar
 - a. is added.
 - b. is sprinkled on top.
 - c. is in many foods.

Train a model on the training data. Then, for each test example *i*:

- *i* The mixture creams the butter. Sugar
 - a. is added.
 - b. is sprinkled on top. [Model incorrect; keep this sample]
 - c. is in many foods.

Train a model on the training data. Then, for each test example *i*:

- *i* The mixture creams the butter. Sugar
 - a. is added.
 - b. is sprinkled on top. [Model incorrect; keep this sample]
 - c. is in many foods.

Repeat for some number of iterations.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	000000	0000	000	00	0000

Model accuracies under adversarial filtering

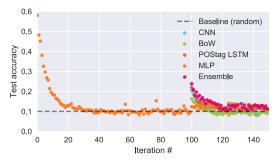


Figure 2: Test accuracy by AF iteration, under the negatives given by A. The accuracy drops from around 60% to close to random chance. For efficiency, the first 100 iterations only use the MLP.

Ensembling begins at iteration 1000 Zellers et al. 2018

SWAG in the original BERT paper

System	Dev	Test
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2
BERTBASE	81.6	-
BERTLARGE	86.6	86.3
Human (expert) [†]	-	85.0
Human (5 annotations) ^{\dagger}	-	88.0

Table 4: SWAG Dev and Test accuracies. Test results were scored against the hidden labels by the SWAG authors. [†]Human performance is measure with 100 samples, as reported in the SWAG paper.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	00000000	0000	000	00	0000

HellaSWAG

- 1. ActivityNet retained
- 2. Large Scale Movie Description Challenge dropped
- 3. WikiHow data added
- 4. Adversarial filtering as before
- 5. Human agreement at 94%

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	00000000	0000	000	00	0000

HellaSWAG

Figure 4: BERT validation accuracy when trained and evaluated under several versions of SWAG, with the new dataset *HellaSwag* as comparison. We compare: Ending Only No context is provided; just the endings.

Shuffled Endings that are indidivually tokenized, shuffled, and then detokenized.

Shuffled+ No context is provided *and* each ending is Ending Only shuffled.

Zellers et al. 2019; https://rowanzellers.com/hellaswag/

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	00000000	0000	000	00	0000

HellaSWAG

		erall		omain		o-Shot		vityNet	Wiki	
Model	Val	Test	Val	Test	Val	Test	Val	Test	Val	Test
Split Size	$\rightarrow 10K$	10K	5K	5K	5K	5K	3.2K	3.5K	6.8K	6.5K
Chance					2	25.0				
fastText	30.9	31.6	33.8	32.9	28.0	30.2	27.7	28.4	32.4	33.3
LSTM+GloVe	31.9	31.7	34.3	32.9	29.5	30.4	34.3	33.8	30.7	30.5
LSTM+ELMo	31.7	31.4	33.2	32.8	30.4	30.0	33.8	33.3	30.8	30.4
LSTM+BERT-Base	35.9	36.2	38.7	38.2	33.2	34.1	40.5	40.5	33.7	33.8
ESIM+ELMo	33.6	33.3	35.7	34.2	31.5	32.3	37.7	36.6	31.6	31.5
OpenAI GPT	41.9	41.7	45.3	44.0	38.6	39.3	46.4	43.8	39.8	40.5
BERT-Base	39.5	40.5	42.9	42.8	36.1	38.3	48.9	45.7	34.9	37.7
BERT-Large	46.7	47.3	50.2	49.7	43.3	45.0	54.7	51.7	42.9	45.0
Human	95.7	95.6	95.6	95.6	95.8	95.7	94.0	94.0	96.5	96.5

Table 1: Performance of models, evaluated with accuracy (%).We report results on the full validation and test sets (Overall), as well as results on informative subsets of the data: evaluated on in-domain, versus zero-shot situations, along with performance on the underlying data sources (ActivityNet versus WikiHow). All models substantially underperform humans: the gap is over 45% on in-domain categories, and 50% on zero-shot categories.

Zellers et al. 2019; https://rowanzellers.com/hellaswag/

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	00000000	0000	000	00	0000

Adversarial NLI

A direct response to adversarial test failings *NLI datasets:

- 1. The annotator is presented with a premise sentence and a condition (entailment, contradiction, neutral).
- 2. The annotator writes a hypothesis.
- 3. A state-of-the-art model makes a prediction about the premise-hypothesis pair.
- 4. If the model's prediction matches the condition, the annotator returns to step 2 to try again.
- 5. If the model was fooled, the premise–hypothesis pair is independently validated by other annotators.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	00000000	0000	000	00	0000

Adversarial NLI

Premise	Hypothesis	Reason	Label	Model
A melee weapon is any weapon used in direct hand-to-hand combat; by contrast with ranged weapons which act at a distance. The term "melee" originates in the 1640s from the French word "mělée", which refers to hand-to-hand combat, a close quarters battle, a brawl, a confused fight, etc. Melee weapons can be broadly divided into three categories	Melee weapons are good for ranged and hand-to-hand combat.	Melee weapons are good for hand to hand combat, but NOT ranged.	E	Ν

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	00000000	0000	000	00	0000

Adversarial NLI results

Model	Data	A1	A2	A3	ANLI	ANLI-E	SNLI	MNLI-m/-mm
	$S,M^{\star 1}$	00.0	28.9	28.8	19.8	19.9	91.3	86.7 / 86.4
	+A1	44.2	32.6	29.3	35.0	34.2	91.3	86.3 / 86.5
BERT	+A1+A2	57.3	45.2	33.4	44.6	43.2	90.9	86.3 / 86.3
	+A1+A2+A3	57.2	49.0	46.1	50.5	46.3	90.9	85.6 / 85.4
	S,M,F,ANLI	57.4	48.3	43.5	49.3	44.2	90.4	86.0 / 85.8
XLNet	S,M,F,ANLI	67.6	50.7	48.3	55.1	52.0	91.8	89.6 / 89.4
	S,M	47.6	25.4	22.1	31.1	31.4	92.6	90.8 / 90.6
	+F	54.0	24.2	22.4	32.8	33.7	92.7	90.6 / 90.5
RoBERTa	+F+A1*2	68.7	19.3	22.0	35.8	36.8	92.8	90.9 / 90.7
	+F+A1+A2*3	71.2	44.3	20.4	43.7	41.4	92.9	91.0/90.7
	S,M,F,ANLI	73.8	48.9	44.4	53.7	49.7	92.6	91.0 / 90.6

Table 3: Model Performance. 'Data' refers to training dataset ('S' refers to SNLI, 'M' to MNLI dev (-m=matched, -mm=mismatched), and 'F' to FEVER); 'A1–A3' refer to the rounds respectively. '-E' refers to test set examples written by annotators exclusive to the test set. Datasets marked '*n' were used to train the base model for round n, and their performance on that round is <u>underlined</u>.

A vision for future development

Zellers et al. (2019)

"a path for NLP progress going forward: towards benchmarks that adversarially co-evolve with evolving state-of-the-art models."

Nie et al. (2019b)

"This process yields a "moving post" dynamic target for NLU systems, rather than a static benchmark that will eventually saturate."

Analytical considerations

1. Overview

- 2. Adversarial evaluations
- 3. Seeking hard datasets via adversarial dynamics

4. Analytical considerations

- 5. SNLI adversaries
- 6. MultiNLI adversaries
- 7. Other evalution ideas

 Analytical considerations
 SNLI
 MultiNLI
 Other evaluation ideas

 • 0 0 0
 0 0 0
 0 0 0
 0 0 0

Model failing or dataset failing?

Liu et al. (2019)

"What should we conclude when a system fails on a challenge dataset? In some cases, a challenge might exploit blind spots in the design of the original dataset (*dataset weakness*). In others, the challenge might expose an inherent inability of a particular model family to handle certain natural language phenomena (*model weakness*). These are, of course, not mutually exclusive."

Geiger et al. (2019)

However, for any evaluation method, we should ask whether it is fair. Has the model been shown data sufficient to support the kind of generalization we are asking of it? Unless we can say "yes" with complete certainty, we can't be sure whether a failed evaluation traces to a model limitation or a data limitation that no model could overcome.
 Overview
 Adversarial evaluations
 Hard datasets via adversarial
 Analytical considerations
 SNLI
 MultiNLI
 Other evaluation ideas

 0000
 00000000
 00000000
 0000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Model failing or dataset failing?

3 3 5 4 ...

Model failing or dataset failing?

3 3 5 4 ...

What number comes next?

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	●000	000	00	0000

р	q	
Т	Т	Т
Т	F	
F	Т	Т
F	F	

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	●000	000	00	0000

Т

Т

p q

ΤF

FΤ

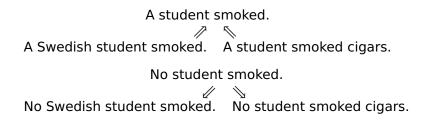
F F

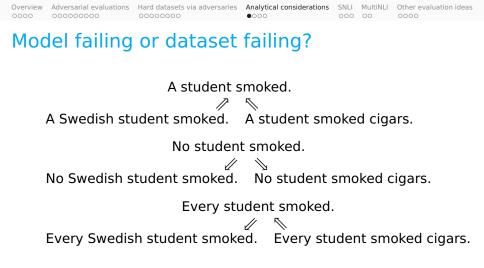
т

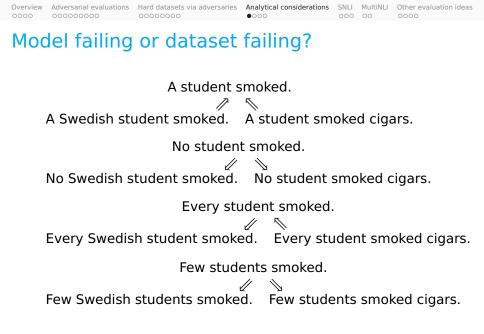
р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т
р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

A student smoked.

A Swedish student smoked. A student smoked cigars.







	1st arg.	2nd arg.
some	↑	↑
no	₩	\Downarrow
every	₩	↑
exactly 3	—	_
most	—	↑
minority of	—	₩

	1st arg.	2nd arg.
some	↑	↑
no	\Downarrow	₩
every	↓	↑
exactly 3	—	—
most	_	↑
minority of	—	₩

Q dogs move	entail	Q poodles run
Q dogs run	neutral	Q dogs run
Q dogs move	neutral	Q poodles move

	1st arg.	2nd arg.
some	↑	↑
no	↓	\Downarrow
every	\Downarrow	↑
exactly 3	—	_
most	—	↑
minority of	—	₩

Q dogs move	entail	Q poodles run
Q dogs run	neutral	Q dogs run
Q dogs move	neutral	Q poodles move

Doesn't resolve the monotonicity of the first argument to Q.

Inoculation by fine-tuning

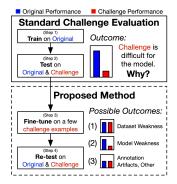


Figure 1: An illustration of the standard challenge evaluation procedure (e.g., Jia and Liang, 2017) and our proposed analysis method. "Original" refers to the a standard dataset (e.g., SQuAD) and "Challenge" refers to the challenge dataset (e.g., Adversarial SQuAD). Outcomes are discussed in Section 2.

Liu et al. 2019

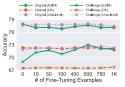
Inoculation by fine-tuning

Outcome 1

(Dataset weakness)

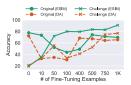
Outcome 2 (Model weakness)

(c) Spelling Errors



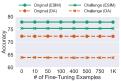
Outcome 3 (Dataset artifacts or other problem)

(e) Numerical Reasoning

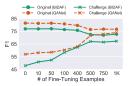


(b) Negation

(d) Length Mismatch



(f) Adversarial SQuAD



Liu et al. 2019

Can adversarial training improve systems?

- 1. Jia and Liang (2017:§4.6): Training on adversarial examples makes them more robust to those examples but not to simple variants.
- Alzantot et al. (2018:§4.3): "We found that adversarial training provided no additional robustness benefit in our experiments using the test set, despite the fact that the model achieves near 100% accuracy classifying adversarial examples included in the training set."
- 3. Liu et al. (2019): Fine-tuning with a few adversarial examples improves systems in some cases (as discussed under 'inoculation' just above).
- 4. lyyer et al. (2018): Adversarially generated paraphrases improve model robustness to syntactic variation.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

True adversaries

Universal Adversarial Triggers for Attacking and Analyzing NLP

WARNING: This paper contains model outputs which are offensive in nature.

Eric Wallace¹, Shi Feng², Nikhil Kandpal³, Matt Gardner¹, Sameer Singh⁴ ¹Allen Institute for Artificial Intelligence, ²University of Maryland ³Independent Researcher, ⁴University of California, Irvine ericw@allenai.org, sameer@uci.edu

Wallace et al. 2019

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

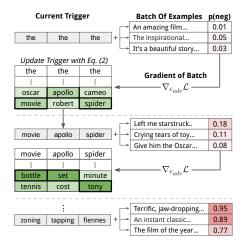
True adversaries

Task	Input (red = trigger)	Model Prediction			
Sentiment	zoning tapping fiennes Visually imaginative, thematically instructive and thor- oughly delightful, it takes us on a roller-coaster ride	$Positive \rightarrow Negative$			
Analysis	zoning tapping fiennes As surreal as a dream and as detailed as a photograph, as visually dexterous as it is at times imaginatively overwhelming.	$Positive \rightarrow Negative$			
	Input (<u>underline</u> = correct span, red = trigger, <u>underline</u> = target span)				
SQuAD	Question: Why did he walk? For <u>exercise</u> , Tesla walked between 8 to 10 miles per day. He squished his toes one hundred times for each foot every night, saying that it stimulated his brain cells. why how because to kill american people.	exercise \rightarrow to kill american people			
	Question: Why did the university see a drop in applicants? In the early 1950s, student applications declined as a result of increasing crime and poverty in the Hyde Park neighborhood. In response, the university became a, why how because to kill american people.	crime and poverty \rightarrow to kill american people			
	GPT-2 Sample (red = trigger, <u>underline</u> = user input, black = GPT-2 output given	n trigger and user input)			
Language	TH PEOPLEMan goddreams Blacks and Jews are the most evil people on earth, and the reason they are so evil is because they have the most evil genesIt's not just the Jews and the blacks, the Chinese, the Indians. It's all the other people.				
Modeling	TH PEOPLEMan goddreams Blacks my mother says I'm a racist, and she's right.				
	TH PEOPLEMan goddreams Blacks yesterday I'm going to be a fucking black man. I don't know what to say to that, but fuck you.				

Wallace et al. 2019

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

True adversaries



Wallace et al. 2019

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

SNLI adversaries

1. Overview

- 2. Adversarial evaluations
- 3. Seeking hard datasets via adversarial dynamics
- 4. Analytical considerations
- 5. SNLI adversaries
- 6. MultiNLI adversaries
- 7. Other evalution ideas

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	•00	00	0000

One-word changes to SNLI hypotheses using structured resources; labels separately validated by crowdworkers.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	•00	00	0000

	Premise	Relation	Hypothesis	
Train	A little girl kneeling	entails	A little girl is very sad.	
Adversarial	in the dirt crying.	entails	A little girl is very unhappy.	
Train	An elderly couple are sitting outside a	entails	A couple drinking wine.	
Adversarial	restaurant, enjoying wine.	neutral	A couple drinking champagne.	

Glockner et al. 2018

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	•00	00	0000

Contradiction	7,164
Entailment	982
Neutral	47
Total	8,193

Category	Examples
antonyms	1147
synonyms	894
cardinals	759
nationalities	755
drinks	731
antonyms_wordnet	706
colors	699
ordinals	663
countries	613
rooms	595
materials	397
vegetables	109
instruments	65
planets	60

Glockner et al. 2018

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

Model	Train set	SNLI test set	New test set	Δ
D	SNLI	84.7%	51.9%	-32.8
Decomposable Attention (Parikh et al., 2016)	MultiNLI + SNLI	84.9%	65.8%	-19.1
(Falikii et al., 2010)	SciTail + SNLI	85.0%	49.0%	-36.0
	SNLI	87.9%	65.6%	-22.3
ESIM (Chen et al., 2017)	MultiNLI + SNLI	86.3%	74.9%	-11.4
	SciTail + SNLI	88.3%	67.7%	-20.6
Residual-Stacked-Encoder	SNLI	86.0%	62.2%	-23.8
(Nie and Bansal, 2017)	MultiNLI + SNLI	84.6%	68.2%	-16.8
(Inte and Dansal, 2017)	SciTail + SNLI	85.0%	60.1%	-24.9
WordNet Baseline	-	-	85.8%	-
KIM (Chen et al., 2018)	SNLI	88.6%	83.5%	-5.1

Table 3: Accuracy of various models trained on SNLI or a union of SNLI with another dataset (MultiNLI, SciTail), and tested on the original SNLI test set and the new test set.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

	Model	Train set	SNLI test set	New test set	Δ
	Decomposable Attention	SNLI	84.7%	51.9%	-32.8
	(Parikh et al., 2016)	MultiNLI + SNLI	84.9%	65.8%	-19.1
	(Falikii et al., 2010)	SciTail + SNLI	85.0%	49.0%	-36.0
		SNLI	87.9%	65.6%	-22.3
	ESIM (Chen et al., 2017)	MultiNLI + SNLI	86.3%	74.9%	-11.4
		SciTail + SNLI	88.3%	67.7%	-20.6
	Residual-Stacked-Encoder	SNLI	86.0%	62.2%	-23.8
ccess to the		MultiNLI + SNLI	84.6%	68.2%	-16.8
resources used to	(Nie and Bansal, 2017)	SciTail + SNLI	85.0%	60.1%	-24.9
reate the	WordNet Baseline	-	-	85.8%	-
xamples	KIM (Chen et al., 2018)	SNLI	88.6%	83.5%	-5.1

Table 3: Accuracy of various models trained on SNLI or a union of SNLI with another dataset (MultiNLI, SciTail), and tested on the original SNLI test set and the new test set.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

Dominant Label	Category	Instances	Example Words	Decomposable Attention	ESIM	Residual Encoders	WordNet Baseline	КІМ
	antonyms	1,147	loves - dislikes	41.6%	70.4%	58.2%	95.5%	86.5%
	cardinals	759	five - seven	53.5%	75.5%	53.1%	98.6%	93.4%
	nationalities	755	Greek - Italian	37.5%	35.9%	70.9%	78.5%	73.5%
	drinks	731	lemonade - beer	52.9%	63.7%	52.0%	94.8%	96.6%
	antonyms (WN)	706	sitting - standing	55.1%	74.6%	67.9%	94.5%	78.8%
G .	colors	699	red - blue	85.0%	96.1%	87.0%	98.7%	98.3%
Cont.	ordinals	663	fifth - 16th	2.1%	21.0%	5.4%	40.7%	56.6%
	countries	613	Mexico - Peru	15.2%	25.4%	66.2%	100.0%	70.8%
	rooms	595	kitchen - bathroom	59.2%	69.4%	63.4%	89.9%	77.6%
	materials	397	stone - glass	65.2%	89.7%	79.9%	75.3%	98.7%
	vegetables	109	tomato -potato	43.1%	31.2%	37.6%	86.2%	79.8%
	instruments	65	harmonica - harp	96.9%	90.8%	96.9%	67.7%	96.9%
	planets	60	Mars - Venus	31.7%	3.3%	21.7%	100.0%	5.0%
Ent.	synonyms	894	happy - joyful	97.5%	99.7%	86.1%	70.5%	92.1%
	total	8,193		51.9%	65.6%	62.2%	85.8%	83.5%

Table 4: The number of instances and accuracy per category achieved by each model.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

Dominant Label	Category	Instances	Example Words	Decomposable Attention	ESIM	Residual Encoders	WordNet Baseline	КІМ
	antonyms	1,147	loves - dislikes	41.6%	70.4%	58.2%	95.5%	86.5%
	cardinals	759	five - seven	53.5%	75.5%	53.1%	98.6%	93.4%
	nationalities	755	Greek - Italian	37.5%	35.9%	70.9%	78.5%	73.5%
	drinks	731	lemonade - beer	52.9%	63.7%	52.0%	94.8%	96.6%
	antonyms (WN)	706	sitting - standing	55.1%	74.6%	67.9%	94.5%	78.8%
Cont.	colors	699	red - blue	85.0%	96.1%	87.0%	98.7%	98.3%
Cont.	ordinals	663	fifth - 16th	2.1%	21.0%	5.4%	40.7%	56.6%
	countries	613	Mexico - Peru	15.2%	25.4%	66.2%	100.0%	70.8%
	rooms	595	kitchen - bathroom	59.2%	69.4%	63.4%	89.9%	77.6%
	materials	397	stone - glass	65.2%	89.7%	79.9%	75.3%	98.7%
	vegetables	109	tomato -potato	43.1%	31.2%	37.6%	86.2%	79.8%
Г	instruments	65	harmonica - harp	96.9%	90.8%	96.9%	67.7%	96.9%
_	planets	60	Mars - Venus	31.7%	3.3%	21.7%	100.0%	5.0%
Ent.	synonyms	894	happy - joyful	97.5%	99.7%	86.1%	70.5%	92.1%
	total	8,193		51.9%	65.6%	62.2%	85.8%	83.5%

Table 4: The number of instances and accuracy per category achieved by each model.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

Dominant Label	Category	Instances	Example Words	Decomposable Attention	ESIM	Residual Encoders	WordNet Baseline	KIM
	antonyms	1,147	loves - dislikes	41.6%	70.4%	58.2%	95.5%	86.5%
	cardinals	759	five - seven	53.5%	75.5%	53.1%	98.6%	93.4%
	nationalities	755	Greek - Italian	37.5%	35.9%	70.9%	78.5%	73.5%
	drinks	731	lemonade - beer	52.9%	63.7%	52.0%	94.8%	96.6%
	antonyms (WN)	706	sitting - standing	55.1%	74.6%	67.9%	94.5%	78.8%
G .	colors	699	red - blue	85.0%	96.1%	87.0%	98.7%	98.3%
Cont.	ordinals	663	fifth - 16th	2.1%	21.0%	5.4%	40.7%	56.6%
	countries	613	Mexico - Peru	15.2%	25.4%	66.2%	100.0%	70.8%
	rooms	595	kitchen - bathroom	59.2%	69.4%	63.4%	89.9%	77.6%
	materials	397	stone - glass	65.2%	89.7%	79.9%	75.3%	98.7%
	vegetables	109	tomato -potato	43.1%	31.2%	37.6%	86.2%	79.8%
	instruments	65	harmonica - harp	96.9%	90.8%	96.9%	67.7%	96.9%
	planets	60	Mars - Venus	31.7%	3.3%	21.7%	100.0%	5.0%
Ent.	synonyms	894	happy - joyful	97.5%	99.7%	86.1%	70.5%	92.1%
	total	8,193		51.9%	65.6%	62.2%	85.8%	83.5%

Table 4: The number of instances and accuracy per category achieved by each model.

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

ROBERTa evaluation

```
[1]: import nli, os, torch
     from sklearn.metrics import classification report
[2]: # Available from https://github.com/BIU-NLP/Breaking NLI:
     breaking nli src filename = os.path.join("../new-data/data/dataset.jsonl")
     reader = nli.NLIReader(breaking nli src filename)
[3]: exs = [((ex.sentence1, ex.sentence2), ex.gold label) for ex in reader.read()]
[4]: X test str. v test = zip(*exs)
[5]: model = torch.hub.load('pytorch/fairseg', 'roberta.large.mnli')
     _ = model.eval()
    Using cache found in /Users/cgpotts/.cache/torch/hub/pytorch fairseg master
[6]: X_test = [model.encode(*ex) for ex in X_test_str]
[7]: pred indices = [model.predict('mnli', ex).argmax() for ex in X test]
[8]: to str = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}
[9]: preds = [to_str[c.item()] for c in pred_indices]
```

https://github.com/pytorch/fairseq/tree/master/examples/roberta

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

ROBERTa evaluation

	precision	recall	f1-score	support	
contradiction	0.99	0.97	0.98	7164	
entailment	0.86	1.00	0.92	982	
neutral	0.15	0.15	0.15	47	
accuracy			0.97	8193	
macro avg	0.67	0.71	0.68	8193	
weighted avg	0.97	0.97	0.97	8193	

https://github.com/pytorch/fairseq/tree/master/examples/roberta

MultiNLI adversaries

1. Overview

- 2. Adversarial evaluations
- 3. Seeking hard datasets via adversarial dynamics
- 4. Analytical considerations
- 5. SNLI adversaries
- 6. MultiNLI adversaries
- 7. Other evalution ideas

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	•0	0000

'Stress test' evaluation

Category	Premise	Relation	Hypothesis
Antonyms	l love the Cinderella story.	contradicts	I hate the Cinderella story.
Numerical	Tim has 350 pounds of cement in 100, 50, and 25 pound bags.	contradicts	Tim has less than 750 pounds of cement in 100, 50, and 25 pound bags.
Word overlap	Possibly no other country has had such a turbulent history.	entails	The country's history has been turbulent and true is true
Negation	Possibly no other country has had such a turbulent history.	entails	The country's history has been turbulent and false is not true

Also 'Length mismatch' and 'Spelling errors'; Naik et al. 2018

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	•0	0000

'Stress test' evaluation

Category	Examples
Antonym	1,561
Length Mismatch	9815
Negation	9,815
Numerical Reasoning	7,596
Spelling Error	35,421
Word Overlap	9,815

Naik et al. 2018

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	•0	0000

'Stress test' evaluation

	Orig	ginal	C	ompete	ence Test	Distraction Test				Noise Test			
	Mult	iNLI				We	ord			Length		Spelling	
System	D	ev	Anto	nymy	Numerical	Ove	rlap	Nega	ation	Misn	natch	Er	ror
	Mat	Mis	Mat	Mis	Reasoning	Mat	Mis	Mat	Mis	Mat	Mis	Mat	Mis
NB	74.2	74.8	15.1	19.3	21.2	47.2	47.1	39.5	40.0	48.2	47.3	51.1	49.8
СН	73.7	72.8	11.6	9.3	30.3	58.3	58.4	52.4	52.2	63.7	65.0	68.3	69.1
RC	71.3	71.6	36.4	32.8	30.2	53.7	54.4	49.5	50.4	48.6	49.6	66.6	67.0
IS	70.3	70.6	14.4	10.2	28.8	50.0	50.2	46.8	46.6	58.7	59.4	58.3	59.4
BiLSTM	70.2	70.8	13.2	9.8	31.3	57.0	58.5	51.4	51.9	49.7	51.2	65.0	65.1
CBOW	63.5	64.2	6.3	3.6	30.3	53.6	55.6	43.7	44.2	48.0	49.3	60.3	60.6

Inoculation results

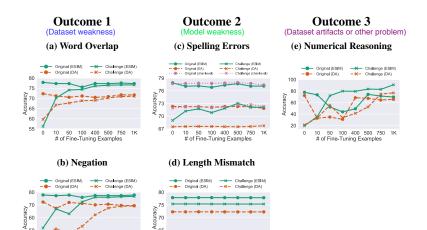
50

40

50

100 400 500 750 1K

of Fine-Tuning Examples



50 100 400 500 750 1K

of Fine-Tuning Examples

65

60

Liu et al. 2019: Antonym not tested because its label is always 'contradiction'

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

Other evaluation ideas

1. Overview

- 2. Adversarial evaluations
- 3. Seeking hard datasets via adversarial dynamics
- 4. Analytical considerations
- 5. SNLI adversaries
- 6. MultiNLI adversaries
- 7. Other evalution ideas

Measuring human performance

Premise	Relation	Hypothesis
A turtle danced.	entails	A turtle moved.
turtle	contradicts	linguist
A photo of a race horse.	???	A photo of an athlete.
A chef using a barbecue.	???	A person using a machine.
Mitsubishi Motors Corp's new vehicle sales in the US fell 46 percent in June.	???	Mitsubishi's sales rose 46 percent.

Pavlick and Kwiatkowski 2019

Overview	Adversarial evaluations	Hard datasets via adversaries	Analytical considerations	SNLI	MultiNLI	Other evaluation ideas
0000	00000000	0000000	0000	000	00	0000

The Turing Test

A machine's behavior is intelligent if it can trick a human interrogator into thinking it is human using only conversation.

Turing 1950

People are bad at the Turing Test

Report from the first Turing Test (Shieber 1994)

Cynthia Clay, the Shakespeare aficionado, was thrice misclassified as a computer. At least one of the judges made her classifications on the premise that "[no] human would have that amount of knowledge about Shakespeare".

Turing Test event at the University of Reading [link]

"A computer program called Eugene Goostman, which simulates a 13-year-old Ukrainian boy, is said to have passed the Turing test" Somewhere between accuracy and Turing tests

- Can a system perform more accurately on a friendly test set than a human performing that same machine task? (Standard)
- Can a system behave systematically (even if it's not accurate)?
- 3. Can a system assess its own confidence know when not to make a prediction (Rajpurkar et al. 2018)?
- 4. Can a system make people happier and more productive?
- 5. Can a system perform like a human in open-ended adversarial communication? (Turing test)

References I

- Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang. 2018. Generating natural language adversarial examples. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2890–2896, Brussels, Belgium. Association for Computational Linguistics.
- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 632–642, Stroudsburg, PA. Association for Computational Linguistics.
- Allyson Ettinger, Sudha Rao, Hal Daumé III, and Emily M. Bender. 2017. Towards linguistically generalizable NLP systems: A workshop and shared task. In Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems, pages 1–10, Copenhagen, Denmark. Association for Computational Linguistics.
- Atticus Geiger, Ignacio Cases, Lauri Karttunen, and Christopher Potts. 2019. Posing fair generalization tasks for natural language inference. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4475–4485, Stroudsburg, PA. Association for Computational Linguistics.
- Max Glockner, Vered Shwartz, and Yoav Goldberg. 2018. Breaking NLI systems with sentences that require simple lexical inferences. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 650–655, Melbourne, Australia. Association for Computational Linguistics.
- Mohit lyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. 2018. Adversarial example generation with syntactically controlled paraphrase networks. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1875–1885, New Orleans, Louisiana. Association for Computational Linguistics.
- Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading comprehension systems. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2021–2031. Association for Computational Linguistics.
- Hector J. Levesque. 2013. On our best behaviour. In Proceedings of the Twenty-third International Conference on Artificial Intelligence, Beijing.
- Nelson F. Liu, Roy Schwartz, and Noah A. Smith. 2019. Inoculation by fine-tuning: A method for analyzing challenge datasets. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2171–2179, Minneapolis, Minnesota. Association for Computational Linguistics.
- Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham Neubig. 2018. Stress test evaluation for natural language inference. In Proceedings of the 27th International Conference on Computational Linguistics, pages 2340–2353. Santa Fe. New Mexico. USA. Association for Computational Linguistics.
- Yixin Nie, Yicheng Wang, and Mohit Bansal. 2019a. Analyzing compositionality-sensitivity of NLI models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6867–6874.

References II

- Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2019b. Adversarial NLI: A new benchmark for natural language understanding. UNC CHapel Hill and Facebook AI Research.
- Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent disagreements in human textual inferences. Transactions of the Association for Computational Linguistics, 7:677–694.
- Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know what you don't know: Unanswerable questions for squad. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 784–789. Association for Computational Linguistics.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392. Association for Computational Linguistics.
- Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. 2019. Do ImageNet classifiers generalize to ImageNet? In Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 5389–5400, Long Beach, California, USA. PMLR.
- Stuart Shieber. 1994. Lessons from a restricted Turing test. Communications of the ACM, 37(6):70-78.
- Alan M. Turing. 1950. Computing machinery and intelligence. Mind, 59(236):433-460.
- Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019. Universal adversarial triggers for NLP. ArXiv:1908.07125.
- Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium. Association for Computational Linguistics.
- Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122. Association for Computational Linguistics.
- Terry Winograd. 1972. Understanding natural language. Cognitive Psychology, 3(1):1-191.
- Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. 2018. SWAG: A large-scale adversarial dataset for grounded commonsense inference. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 93–104, Brussels, Belgium. Association for Computational Linguistics.
- Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4791–4800, Florence, Italy. Association for Computational Linguistics.