
Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Natural Language Inference

Christopher Potts

Stanford Linguistics

CS 224U: Natural language understanding
April 29 and May 1

1 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Overview

1. Overview
2. SNLI and MultiNLI
3. Hand-built features
4. nli.experiment
5. Sentence-encoding models
6. Chained models
7. Attention
8. Error analysis

2 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Associated materials

1. Code
a. nli.py
b. nli_01_task_and_data.ipynb
c. nli_02_models.ipynb

2. Homework 4 and bake-off 4: hw4_wordentail.ipynb

3. Core readings: Bowman et al. 2015a; Rocktäschel et al.
2016

4. Auxiliary readings: Goldberg 2015; Dagan et al. 2006;
MacCartney & Manning 2008; Williams et al. 2018

3 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Simple examples

Premise Relation Hypothesis

turtle contradicts linguist

A turtle danced. entails A turtle moved.

Every reptile danced. neutral A turtle ate.

Some turtles walk. contradicts No turtles move.

James Byron Dean refused to
move without blue jeans.

entails James Dean didn’t dance
without pants.

Mitsubishi Motors Corp’s new
vehicle sales in the US fell 46
percent in June.

contradicts Mitsubishi’s sales rose 46
percent.

Acme Corporation reported
that its CEO resigned.

entails Acme’s CEO resigned.

4 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

NLI task formulation
Does the premise justify an inference to the
hypothesis?

• Commonsense reasoning, rather than strict logic.
• Focus on local inference steps, rather than long

deductive chains.
• Emphasis on variability of linguistic expression.

Perspectives

• Zaenen et al. (2005): Local textual inference: can it be
defined or circumscribed?

• Manning (2006): Local textual inference: it’s hard to
circumscribe, but you know it when you see it – and NLP
needs it.

• Crouch et al. (2006): Circumscribing is not excluding: a
reply to Manning.

5 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Connections to other tasks

Dagan et al. (2006)
It seems that major inferences, as needed by multiple
applications, can indeed be cast in terms of textual
entailment.

[. . .]

Consequently, we hypothesize that textual entailment
recognition is a suitable generic task for evaluating and
comparing applied semantic inference models. Eventually,
such efforts can promote the development of entailment
recognition “engines” which may provide useful generic
modules across applications.

6 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Connections to other tasks

Task NLI framing

Paraphrase text ≡ paraphrase
Summarization text À summary
Information retrieval query Á document
Question answering question Á answer

Who left? ⇒ Someone left

Someone left Á Sandy left

6 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Models for NLI

robust, shallow

deep, brittle

Logic and
theorem
proving Natural

Logic
Semantic

graphs

N-gram
variations

Deep
learning
(2015)

effectiveness

de
pt

h
of

 re
pr

es
en

ta
tio

ns

Clever
hand-built
features

Bos & Markert 2005

MacCartney 2009

Hickl et al. 2006; de Marneffe et al. 2006

A standard baseline, often very robust!

See the Excitement Open Platform
(Pado et al. 2012)

7 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Models for NLI

robust, shallow

deep, brittle

Logic and
theorem
proving Natural

Logic
Semantic

graphs

N-gram
variations

effectiveness

de
pt

h
of

 re
pr

es
en

ta
tio

ns

Clever
hand-built
features

Bos & Markert 2005

MacCartney 2009

Hickl et al. 2006; de Marneffe et al. 2006

A standard baseline, often very robust!

See the Excitement Open Platform
(Pado et al. 2012)

Deep
learning
(2019)

7 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Other NLI datasets
• The FraCaS textual inference test suite
https://nlp.stanford.edu/~wcmac/downloads/

• SemEval 2013
https://www.cs.york.ac.uk/semeval-2013/

• SemEval 2014: Sentences Involving Compositional Knowledge (SICK)
http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools

• MedNLI (derived from MIMIC III)
https://physionet.org/physiotools/mimic-code/mednli/

• XNLI is a multilingual NLI dataset derived from MultiNLI
https://github.com/facebookresearch/XNLI

• Diverse Natural Language Inference Collection (DNC)
http://decomp.io/projects/diverse-natural-language-inference/

• SciTail (derived from science exam questions and Web text)
http://data.allenai.org/scitail/

• Related: 30M Factoid Question-Answer Corpus
http://agarciaduran.org/

• Related:The Penn Paraphrase Database
http://paraphrase.org/

• The GLUE benchmark (diverse tasks including NLI)
https://gluebenchmark.com

8 / 57

https://nlp.stanford.edu/~wcmac/downloads/
https://www.cs.york.ac.uk/semeval-2013/
http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools
https://physionet.org/physiotools/mimic-code/mednli/
https://github.com/facebookresearch/XNLI
http://decomp.io/projects/diverse-natural-language-inference/
http://data.allenai.org/scitail/
http://agarciaduran.org/
http://paraphrase.org/
https://gluebenchmark.com

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Label sets

Labels
couch
sofa

crow
bird

bird
crow

hippo
hungry

turtle
linguist

2-way
RTE 1,2,3

Yes

entailment

No

non-entailment

3-way
RTE4,

FraCaS, *NLI

Yes

entailment

Unknown

non-entailment

No

contradiction

4-way
Sánchez-
Valencia

P ≡ Q

equivalence

P ⊏ Q

forward

P ⊐ Q

reverse

P # Q

non-entailment

9 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Hypothesis-only baselines

• In his project for this course (2016), Leonid Keselman
observed that hypothesis-only models are strong.

• Other groups have since further supported this (Poliak
et al. 2018; Gururangan et al. 2018; Tsuchiya 2018)

• Why does it hold? We can trace this partly to artificial
biases in the texts people create, but part of the effect is
the result of the way semantic spaces are organized:
É Specific claims are likely to be premises in

entailment cases.
É General claims are likely to be hypotheses in

entailment pairs.
É Specific claims are more likely to lead to

contradiction.

10 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

SNLI and MultiNLI

1. Overview
2. SNLI and MultiNLI
3. Hand-built features
4. nli.experiment
5. Sentence-encoding models
6. Chained models
7. Attention
8. Error analysis

11 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

SNLI
1. Bowman et al. 2015a

2. All the premises are image captions from the Flickr30K corpus (Young
et al. 2014).

3. All the hypotheses were written by crowdworkers.

4. Some of the sentences reflect stereotypes (Rudinger et al. 2017).

5. 550,152 train examples; 10K dev; 10K test

6. Mean length in tokens:
É Premise: 14.1
É Hypothesis: 8.3

7. Clause-types:
É Premise S-rooted: 74%
É Hypothesis S-rooted: 88.9%

8. Vocab size: 37,026

9. 56,951 examples validated by four additional annotators.

É 58.3% examples with unanimous gold label
É 91.2% of gold labels match the author’s label
É 0.70 overall Fleiss kappa

10. Leaderboard: https://nlp.stanford.edu/projects/snli/

12 / 57

https://nlp.stanford.edu/projects/snli/

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Crowdsourcing methodsThe Stanford NLI corpus

13 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Examples

Premise Relation Hypothesis

A man inspects the uniform of
a figure in some East Asian
country.

contradiction
c c c c c The man is sleeping

An older and younger man
smiling.

neutral
n n e n n Two men are smiling and

laughing at the cats playing
on the floor.

A black race car starts up in
front of a crowd of people.

contradiction
c c c c c A man is driving down a lonely

road.

A soccer game with multiple
males playing.

entailment
e e e e e Some men are playing a sport.

A smiling costumed woman is
holding an umbrella.

neutral
n n e c n A happy woman in a fairy

costume holds an umbrella.

14 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Event coreference

Premise Relation Hypothesis

A boat sank in the
Pacific Ocean.

contradiction A boat sank in the
Atlantic Ocean.

Ruth Bader Ginsburg
was appointed to the
Supreme Court.

contradiction I had a sandwich for
lunch today

If premise and hypothesis probably describe a different
photo, then the label is contradiction

15 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

MultiNLI
1. Williams et al. 2018

2. Train premises drawn from five genres:
É Fiction: works from 1912–2010 spanning many genres
É Government: reports, letters, speeches, etc., from government

websites
É The Slate website
É Telephone: the Switchboard corpus
É Travel: Berlitz travel guides

3. Additional genres just for dev and test (the mismatched condition):
É The 9/11 report
É Face-to-face: The Charlotte Narrative and Conversation Collection
É Fundraising letters
É Non-fiction from Oxford University Press
É Verbatim: articles about linguistics

4. 392,702 train examples; 20K dev; 20K test
5. 19,647 examples validated by four additional annotators

É 58.2% examples with unanimous gold label
É 92.6% of gold labels match the author’s label

6. Test-set labels available as a Kaggle competition.
7. Project page: https://www.nyu.edu/projects/bowman/multinli/

16 / 57

https://www.nyu.edu/projects/bowman/multinli/

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

MultiNLI annotations

Matched Mismatched

ACTIVE/PASSIVE 15 10
ANTO 17 20
BELIEF 66 58
CONDITIONAL 23 26
COREF 30 29
LONG_SENTENCE 99 109
MODAL 144 126
NEGATION 129 104
PARAPHRASE 25 37
QUANTIFIER 125 140
QUANTITY/TIME_REASONING 15 39
TENSE_DIFFERENCE 51 18
WORD_OVERLAP 28 37

767 753

17 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Code snippets: Readers and Example objects

nli_code01_solved

April 20, 2019

In [1]: import nli
import os

In [2]: SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")
MULTINLI_HOME = os.path.join("data", "nlidata", "multinli_1.0")

In [3]: snli_train_reader = nli.SNLITrainReader(SNLI_HOME, samp_percentage=0.10)

In [4]: snli_dev_reader = nli.SNLIDevReader(SNLI_HOME, samp_percentage=0.10)

In [5]: multi_train_reader = nli.MultiNLITrainReader(SNLI_HOME, samp_percentage=0.10)

In [6]: multi_matched_dev_reader = nli.MultiNLIMatchedDevReader(SNLI_HOME)

In [7]: multi_mismatched_dev_reader = nli.MultiNLIMismatchedDevReader(SNLI_HOME)

In [8]: snli_iterator = iter(nli.SNLITrainReader(SNLI_HOME).read())

In [9]: snli_ex = next(snli_iterator)

In [10]: print(snli_ex)

A person on a horse jumps over a broken down airplane.
neutral
A person is training his horse for a competition.

In []:

In []:

In []:

In []:

In []:

In []:

In []:

1

18 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Code snippets: Readers and Example objects
In []:

In [11]: snli_ex.sentence1

Out[11]: 'A person on a horse jumps over a broken down airplane.'

In [12]: snli_ex.sentence2

Out[12]: 'A person is training his horse for a competition.'

In [13]: snli_ex.gold_label

Out[13]: 'neutral'

In [14]: snli_ex.sentence1_binary_parse

Out[14]:

In [15]: snli_ex.sentence1_parse

Out[15]:

2

In []:

In [11]: snli_ex.sentence1

Out[11]: 'A person on a horse jumps over a broken down airplane.'

In [12]: snli_ex.sentence2

Out[12]: 'A person is training his horse for a competition.'

In [13]: snli_ex.gold_label

Out[13]: 'neutral'

In [14]: snli_ex.sentence1_binary_parse

Out[14]:

In [15]: snli_ex.sentence1_parse

Out[15]:

2

18 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Code snippets: Readers and Example objects
In []:

In [11]: snli_ex.sentence1

Out[11]: 'A person on a horse jumps over a broken down airplane.'

In [12]: snli_ex.sentence2

Out[12]: 'A person is training his horse for a competition.'

In [13]: snli_ex.gold_label

Out[13]: 'neutral'

In [14]: snli_ex.sentence1_binary_parse

Out[14]:

In [15]: snli_ex.sentence1_parse

Out[15]:

2

In []:

In [11]: snli_ex.sentence1

Out[11]: 'A person on a horse jumps over a broken down airplane.'

In [12]: snli_ex.sentence2

Out[12]: 'A person is training his horse for a competition.'

In [13]: snli_ex.gold_label

Out[13]: 'neutral'

In [14]: snli_ex.sentence1_binary_parse

Out[14]:

In [15]: snli_ex.sentence1_parse

Out[15]:

2

18 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Code snippets: MultiNLI annotations

nli_code02_solved

April 20, 2019

In [1]: import nli
import os

In [2]: ANN_HOME = os.path.join("data", "nlidata", "multinli_1.0_annotations")
MULTINLI_HOME = os.path.join("data", "nlidata", "multinli_1.0")

In [3]: matched_filename = os.path.join(ANN_HOME, "multinli_1.0_matched_annotations.txt")

mismatched_filename = os.path.join(ANN_HOME, "multinli_1.0_mismatched_annotations.txt")

In [4]: matched_ann = nli.read_annotated_subset(matched_filename, MULTINLI_HOME)

In [5]: len(matched_ann)

Out[5]: 495

In [6]: pair_id = '116176e'
ann_ex = matched_ann[pair_id]
print("pairID: {}".format(pair_id))
print(ann_ex['annotations'])
ex = ann_ex['example']
print(ex.sentence1)
print(ex.gold_label)
print(ex.sentence2)

pairID: 116176e
['#MODAL', '#COREF']
Students of human misery can savor its underlying sadness and futility.
entailment
Those who study human misery will savor the sadness and futility.

In []:

1

19 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Hand-built features

1. Overview
2. SNLI and MultiNLI
3. Hand-built features
4. nli.experiment
5. Sentence-encoding models
6. Chained models
7. Attention
8. Error analysis

20 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Word overlap and word-cross product

nli_code03_solved

April 20, 2019

In [1]: from collections import Counter
from itertools import product
import nli
from nltk.tree import Tree
import os

In [2]: def word_overlap_phi(t1, t2):
overlap = set([w1 for w1 in t1.leaves() if w1 in t2.leaves()])
return Counter(overlap)

In [3]: def word_cross_product_phi(t1, t2):
return Counter([(w1, w2) for w1, w2 in product(t1.leaves(), t2.leaves())])

In [4]: t1 = Tree.fromstring("""(S (NP Tobi) (VP (V is) (NP (D a) (N dog))))""")

In [5]: t2 = Tree.fromstring("""(S (NP Tobi) (VP (V is) (NP (D a) (NP (A big) (N dog)))))""")

In [6]: display(t1, t2)

1

21 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Word overlap and word-cross product

nli_code03_solved

April 20, 2019

In [1]: from collections import Counter
from itertools import product
import nli
from nltk.tree import Tree
import os

In [2]: def word_overlap_phi(t1, t2):
overlap = set([w1 for w1 in t1.leaves() if w1 in t2.leaves()])
return Counter(overlap)

In [3]: def word_cross_product_phi(t1, t2):
return Counter([(w1, w2) for w1, w2 in product(t1.leaves(), t2.leaves())])

In [4]: t1 = Tree.fromstring("""(S (NP Tobi) (VP (V is) (NP (D a) (N dog))))""")

In [5]: t2 = Tree.fromstring("""(S (NP Tobi) (VP (V is) (NP (D a) (NP (A big) (N dog)))))""")

In [6]: display(t1, t2)

1

In [7]: word_overlap_phi(t1, t2)

Out[7]: Counter({'Tobi': 1, 'dog': 1, 'is': 1, 'a': 1})

In [8]: word_cross_product_phi(t1, t2)

Out[8]: Counter({('Tobi', 'Tobi'): 1,
('Tobi', 'is'): 1,
('Tobi', 'a'): 1,
('Tobi', 'big'): 1,
('Tobi', 'dog'): 1,
('is', 'Tobi'): 1,
('is', 'is'): 1,
('is', 'a'): 1,
('is', 'big'): 1,
('is', 'dog'): 1,
('a', 'Tobi'): 1,
('a', 'is'): 1,
('a', 'a'): 1,
('a', 'big'): 1,
('a', 'dog'): 1,
('dog', 'Tobi'): 1,
('dog', 'is'): 1,
('dog', 'a'): 1,
('dog', 'big'): 1,
('dog', 'dog'): 1})

2

21 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

WordNet features

nli_code_04_solved

April 20, 2019

In [1]: from collections import Counter
from itertools import product
from nltk.corpus import wordnet as wn
from nltk.tree import Tree

In [2]: puppies = wn.synsets('puppy')
[h for ss in puppies for h in ss.hypernyms()]

Out[2]: [Synset('dog.n.01'), Synset('pup.n.01'), Synset('young_person.n.01')]

In [3]: # A more conservative approach uses just the first-listed
Synset, which should be the most frequent sense:
wn.synsets('puppy')[0].hypernyms()

Out[3]: [Synset('dog.n.01'), Synset('pup.n.01')]

In [4]: def wordnet_features(t1, t2, methodname):
pairs = []
words1 = t1.leaves()
words2 = t2.leaves()
for w1, w2 in product(words1, words2):

hyps = [h for ss in wn.synsets(w1) for h in getattr(ss, methodname)()]
syns = wn.synsets(w2)
if set(hyps) & set(syns):

pairs.append((w1, w2))
return Counter(pairs)

In [5]: def hypernym_features(t1, t2):
return wordnet_features(t1, t2, 'hypernyms')

In [6]: def hyponym_features(t1, t2):
return wordnet_features(t1, t2, 'hyponyms')

In []:

In []:

In []:

In []:

1

22 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

WordNet features
In []:

In [7]: t1 = Tree.fromstring("""(S (NP (D the) (N puppy)) (VP moved))""")

In [8]: t2 = Tree.fromstring("""(S (NP (D the) (N dog)) (VP danced))""")

In [9]: display(t1, t2)

In [10]: hypernym_features(t1, t2)

Out[10]: Counter({('puppy', 'dog'): 1})

In [11]: hyponym_features(t1, t2)

Out[11]: Counter({('moved', 'danced'): 1})

In []:

2

In []:

In [7]: t1 = Tree.fromstring("""(S (NP (D the) (N puppy)) (VP moved))""")

In [8]: t2 = Tree.fromstring("""(S (NP (D the) (N dog)) (VP danced))""")

In [9]: display(t1, t2)

In [10]: hypernym_features(t1, t2)

Out[10]: Counter({('puppy', 'dog'): 1})

In [11]: hyponym_features(t1, t2)

Out[11]: Counter({('moved', 'danced'): 1})

In []:

2

In []:

In [7]: t1 = Tree.fromstring("""(S (NP (D the) (N puppy)) (VP moved))""")

In [8]: t2 = Tree.fromstring("""(S (NP (D the) (N dog)) (VP danced))""")

In [9]: display(t1, t2)

In [10]: hypernym_features(t1, t2)

Out[10]: Counter({('puppy', 'dog'): 1})

In [11]: hyponym_features(t1, t2)

Out[11]: Counter({('moved', 'danced'): 1})

In []:

2

22 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Other hand-built features

1. Additional WordNet relations

2. Edit distance

3. Word differences (cf. word overlap)

4. Alignment-based features

5. Negation

6. Quantifier relations (e.g., every À some; see MacCartney
& Manning 2009)

7. Named entity features

23 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Combining dense and sparse representations

long and sparseshort and dense

24 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Combining dense and sparse representations

short and dense

long and sparse

short and dense

Model external transformation, or with
learned parameters

24 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

nli.experiment

1. Overview
2. SNLI and MultiNLI
3. Hand-built features
4. nli.experiment
5. Sentence-encoding models
6. Chained models
7. Attention
8. Error analysis

25 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Complete experiment with nli.experiment

nli_code05_solved

April 20, 2019

In [1]: from collections import Counter
import nli
import os
from sklearn.linear_model import LogisticRegression
import utils

In [2]: SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")

In [3]: def word_overlap_phi(t1, t2):
overlap = set([w1 for w1 in t1.leaves() if w1 in t2.leaves()])
return Counter(overlap)

In [4]: def fit_softmax(X, y):
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit(X, y)
return mod

In [5]: train_reader_10 = nli.SNLITrainReader(SNLI_HOME, samp_percentage=0.10)

In [6]: basic_experiment = nli.experiment(
train_reader_10,
word_overlap_phi,
fit_softmax,
assess_reader=None, # Default
train_size=0.7, # Default
score_func=utils.safe_macro_f1, # Default
vectorize=True, # Default
verbose=True, # Default
random_state=None) # Default

In [7]: list(basic_experiment.keys())

Out[7]: ['model',
'phi',
'train_dataset',
'assess_dataset',
'predictions',
'metric',
'score']

1

26 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Hyperparameter selection on train subsets

nli_code06_solved

April 20, 2019

In [1]: from collections import Counter
import nli
import os
from sklearn.linear_model import LogisticRegression
import utils

In [2]: SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")

In [3]: def word_overlap_phi(t1, t2):
overlap = set([w1 for w1 in t1.leaves() if w1 in t2.leaves()])
return Counter(overlap)

In [4]: def fit_softmax_with_crossvalidation(X, y):
basemod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
param_grid = {'C': [0.6, 0.7, 0.8, 1.0, 1.1], 'penalty': ['l1','l2']}
best_mod = utils.fit_classifier_with_crossvalidation(

X, y, basemod, cv=3, param_grid=param_grid)
return best_mod

In [5]: # Select hyperparameters based on a subset of the data:
tuning_experiment = nli.experiment(

nli.SNLITrainReader(SNLI_HOME, samp_percentage=0.10),
word_overlap_phi,
fit_softmax_with_crossvalidation)

Best params: {'C': 1.0, 'penalty': 'l2'}
Best score: 0.413

precision recall f1-score support

contradiction 0.448 0.660 0.533 5490
entailment 0.471 0.394 0.429 5435

neutral 0.387 0.266 0.315 5481

micro avg 0.440 0.440 0.440 16406
macro avg 0.435 0.440 0.426 16406

weighted avg 0.435 0.440 0.426 16406

1

nli_code06_solved

April 20, 2019

In [1]: from collections import Counter
import nli
import os
from sklearn.linear_model import LogisticRegression
import utils

In [2]: SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")

In [3]: def word_overlap_phi(t1, t2):
overlap = set([w1 for w1 in t1.leaves() if w1 in t2.leaves()])
return Counter(overlap)

In [4]: def fit_softmax_with_crossvalidation(X, y):
basemod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
param_grid = {'C': [0.6, 0.7, 0.8, 1.0, 1.1], 'penalty': ['l1','l2']}
best_mod = utils.fit_classifier_with_crossvalidation(

X, y, basemod, cv=3, param_grid=param_grid)
return best_mod

In [5]: # Select hyperparameters based on a subset of the data:
tuning_experiment = nli.experiment(

nli.SNLITrainReader(SNLI_HOME, samp_percentage=0.10),
word_overlap_phi,
fit_softmax_with_crossvalidation)

Best params: {'C': 1.0, 'penalty': 'l2'}
Best score: 0.413

precision recall f1-score support

contradiction 0.448 0.660 0.533 5490
entailment 0.471 0.394 0.429 5435

neutral 0.387 0.266 0.315 5481

micro avg 0.440 0.440 0.440 16406
macro avg 0.435 0.440 0.426 16406

weighted avg 0.435 0.440 0.426 16406

1

27 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Hyperparameter selection on train subsets

nli_code06_solved

April 20, 2019

In [1]: from collections import Counter
import nli
import os
from sklearn.linear_model import LogisticRegression
import utils

In [2]: SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")

In [3]: def word_overlap_phi(t1, t2):
overlap = set([w1 for w1 in t1.leaves() if w1 in t2.leaves()])
return Counter(overlap)

In [4]: def fit_softmax_with_crossvalidation(X, y):
basemod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
param_grid = {'C': [0.6, 0.7, 0.8, 1.0, 1.1], 'penalty': ['l1','l2']}
best_mod = utils.fit_classifier_with_crossvalidation(

X, y, basemod, cv=3, param_grid=param_grid)
return best_mod

In [5]: # Select hyperparameters based on a subset of the data:
tuning_experiment = nli.experiment(

nli.SNLITrainReader(SNLI_HOME, samp_percentage=0.10),
word_overlap_phi,
fit_softmax_with_crossvalidation)

Best params: {'C': 1.0, 'penalty': 'l2'}
Best score: 0.413

precision recall f1-score support

contradiction 0.448 0.660 0.533 5490
entailment 0.471 0.394 0.429 5435

neutral 0.387 0.266 0.315 5481

micro avg 0.440 0.440 0.440 16406
macro avg 0.435 0.440 0.426 16406

weighted avg 0.435 0.440 0.426 16406

1

In [6]: def fit_softmax_classifier_with_preselected_params(X, y):
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto',
C=1.0, penalty='l2')

mod.fit(X, y)
return mod

In [7]: # Use the selected hyperparamters in a (costly) full dataset training run:
full_experiment = nli.experiment(

nli.SNLITrainReader(SNLI_HOME),
word_overlap_phi,
fit_softmax_classifier_with_preselected_params,
assess_reader=nli.SNLIDevReader(SNLI_HOME))

precision recall f1-score support

contradiction 0.459 0.708 0.557 3278
entailment 0.503 0.446 0.473 3329

neutral 0.407 0.231 0.295 3235

micro avg 0.463 0.463 0.463 9842
macro avg 0.456 0.462 0.441 9842

weighted avg 0.457 0.463 0.442 9842

2

27 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Hyperparameter selection with a few iterations

In [8]: def fit_softmax_with_crossvalidation_small_iter(X, y):
basemod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto',
max_iter=3)

param_grid = {'C': [0.6, 0.7, 0.8, 1.0, 1.1], 'penalty': ['l1','l2']}
best_mod = utils.fit_classifier_with_crossvalidation(

X, y, basemod, cv=3, param_grid=param_grid)
return best_mod

In [9]: # Select hyperparameters based on a few iterations:
tuning_experiment_small_iter = nli.experiment(

nli.SNLITrainReader(SNLI_HOME),
word_overlap_phi,
fit_softmax_with_crossvalidation_small_iter)

.../base.py:922: ConvergenceWarning: Liblinear failed to converge,
increase the number of iterations.

Best params: {'C': 1.0, 'penalty': 'l1'}
Best score: 0.425

precision recall f1-score support

contradiction 0.449 0.671 0.538 54972
entailment 0.462 0.452 0.457 55179

neutral 0.394 0.206 0.271 54660

micro avg 0.444 0.444 0.444 164811
macro avg 0.435 0.443 0.422 164811

weighted avg 0.435 0.444 0.422 164811

In [10]:

3

28 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

A hypothesis-only experiment

nli_code09_solved

April 23, 2019

In [1]: from collections import Counter
import nli
import os
from sklearn.dummy import DummyClassifier
from sklearn.linear_model import LogisticRegression
import utils

In [2]: SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")

In [3]: def hypothesis_only_unigrams_phi(t1, t2):
return Counter(t2.leaves())

In [4]: def fit_softmax_classifier_with_preselected_params(X, y):
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto',
C=1.0, penalty='l2')

mod.fit(X, y)
return mod

In [5]: hypothesis_only_experiment = nli.experiment(
nli.SNLITrainReader(SNLI_HOME),
hypothesis_only_unigrams_phi,
fit_softmax_classifier_with_preselected_params,
assess_reader=nli.SNLIDevReader(SNLI_HOME))

precision recall f1-score support

contradiction 0.654 0.631 0.642 3278
entailment 0.639 0.715 0.675 3329

neutral 0.670 0.613 0.640 3235

micro avg 0.653 0.653 0.653 9842
macro avg 0.655 0.653 0.653 9842

weighted avg 0.654 0.653 0.653 9842

In [6]: def fit_dummy_classifier(X, y):
mod = DummyClassifier(strategy='stratified')

1

29 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

A hypothesis-only experiment

In []:

In []:

In []:

In [6]: def fit_dummy_classifier(X, y):
mod = DummyClassifier(strategy='stratified')
mod.fit(X, y)
return mod

In [7]: random_experiment = nli.experiment(
nli.SNLITrainReader(SNLI_HOME),
lambda t1, t2: {'constant': 1}, # `DummyClassifier` ignores this!
fit_dummy_classifier,
assess_reader=nli.SNLIDevReader(SNLI_HOME))

precision recall f1-score support

contradiction 0.336 0.338 0.337 3278
entailment 0.336 0.330 0.333 3329

neutral 0.331 0.335 0.333 3235

micro avg 0.334 0.334 0.334 9842
macro avg 0.334 0.334 0.334 9842

weighted avg 0.334 0.334 0.334 9842

2

29 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

A premise-only experiment

mod.fit(X, y)
return mod

In [7]: random_experiment = nli.experiment(
nli.SNLITrainReader(SNLI_HOME),
lambda t1, t2: {'constant': 1}, # `DummyClassifier` ignores this!
fit_dummy_classifier,
assess_reader=nli.SNLIDevReader(SNLI_HOME))

precision recall f1-score support

contradiction 0.336 0.338 0.337 3278
entailment 0.336 0.330 0.333 3329

neutral 0.331 0.335 0.333 3235

micro avg 0.334 0.334 0.334 9842
macro avg 0.334 0.334 0.334 9842

weighted avg 0.334 0.334 0.334 9842

In [8]: def premise_only_unigrams_phi(t1, t2):
return Counter(t1.leaves())

In [9]: premise_only_experiment = nli.experiment(
nli.SNLITrainReader(SNLI_HOME),
premise_only_unigrams_phi,
fit_softmax_classifier_with_preselected_params,
assess_reader=nli.SNLIDevReader(SNLI_HOME))

precision recall f1-score support

contradiction 0.337 0.255 0.290 3278
entailment 0.340 0.388 0.363 3329

neutral 0.330 0.364 0.346 3235

micro avg 0.336 0.336 0.336 9842
macro avg 0.336 0.336 0.333 9842

weighted avg 0.336 0.336 0.333 9842

2

• A result of the data collection method: each premise is paired with one
hypothesis from each class.

• The logistic regression premise-only baseline for the word-entailment
bake-off is ≈0.47, vs. ≈0.50 for hypothesis-only.

30 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

A premise-only experiment

mod.fit(X, y)
return mod

In [7]: random_experiment = nli.experiment(
nli.SNLITrainReader(SNLI_HOME),
lambda t1, t2: {'constant': 1}, # `DummyClassifier` ignores this!
fit_dummy_classifier,
assess_reader=nli.SNLIDevReader(SNLI_HOME))

precision recall f1-score support

contradiction 0.336 0.338 0.337 3278
entailment 0.336 0.330 0.333 3329

neutral 0.331 0.335 0.333 3235

micro avg 0.334 0.334 0.334 9842
macro avg 0.334 0.334 0.334 9842

weighted avg 0.334 0.334 0.334 9842

In [8]: def premise_only_unigrams_phi(t1, t2):
return Counter(t1.leaves())

In [9]: premise_only_experiment = nli.experiment(
nli.SNLITrainReader(SNLI_HOME),
premise_only_unigrams_phi,
fit_softmax_classifier_with_preselected_params,
assess_reader=nli.SNLIDevReader(SNLI_HOME))

precision recall f1-score support

contradiction 0.337 0.255 0.290 3278
entailment 0.340 0.388 0.363 3329

neutral 0.330 0.364 0.346 3235

micro avg 0.336 0.336 0.336 9842
macro avg 0.336 0.336 0.333 9842

weighted avg 0.336 0.336 0.333 9842

2

• A result of the data collection method: each premise is paired with one
hypothesis from each class.

• The logistic regression premise-only baseline for the word-entailment
bake-off is ≈0.47, vs. ≈0.50 for hypothesis-only.

30 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Sentence-encoding models

1. Overview
2. SNLI and MultiNLI
3. Hand-built features
4. nli.experiment
5. Sentence-encoding models
6. Chained models
7. Attention
8. Error analysis

31 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Distributed representations as features

32 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Code: Distributed representations as features

nli_code07_solved

April 20, 2019

In [1]: import nli
import numpy as np
import os
from sklearn.linear_model import LogisticRegression
import utils

In [2]: SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")
GLOVE_HOME = os.path.join('data', 'glove.6B')

In [3]: glove_lookup = utils.glove2dict(
os.path.join(GLOVE_HOME, 'glove.6B.50d.txt'))

In [4]: def _get_tree_vecs(tree, lookup, np_func):
allvecs = np.array([lookup[w] for w in tree.leaves() if w in lookup])
if len(allvecs) == 0:

dim = len(next(iter(lookup.values())))
feats = np.zeros(dim)

else:
feats = np_func(allvecs, axis=0)

return feats

In [5]: def glove_leaves_phi(t1, t2, np_func=np.sum):
prem_vecs = _get_tree_vecs(t1, glove_lookup, np_func)
hyp_vecs = _get_tree_vecs(t2, glove_lookup, np_func)
return np.concatenate((prem_vecs, hyp_vecs))

In [6]: def glove_leaves_sum_phi(t1, t2):
return glove_leaves_phi(t1, t2, np_func=np.sum)

In [7]: def fit_softmax(X, y):
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit(X, y)
return mod

In [8]: glove_sum_experiment = nli.experiment(
nli.SNLITrainReader(SNLI_HOME),
glove_leaves_sum_phi,
fit_softmax,
assess_reader=nli.SNLIDevReader(SNLI_HOME),
vectorize=False) # We already have vectors!

1

33 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Code: Distributed representations as features

In []:

In []:

In []:

In []:

In []:

In [7]: def fit_softmax(X, y):
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit(X, y)
return mod

In [8]: glove_sum_experiment = nli.experiment(
nli.SNLITrainReader(SNLI_HOME),
glove_leaves_sum_phi,
fit_softmax,
assess_reader=nli.SNLIDevReader(SNLI_HOME),
vectorize=False) # We already have vectors!

precision recall f1-score support

contradiction 0.505 0.476 0.490 3278
entailment 0.500 0.561 0.529 3329

neutral 0.549 0.513 0.530 3235

micro avg 0.517 0.517 0.517 9842
macro avg 0.518 0.516 0.516 9842

weighted avg 0.518 0.517 0.516 9842

2

33 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Rationale for sentence-encoding models

1. Encoding the premise and hypothesis separately might
give the model a chance to find rich abstract
relationships between them.

2. Sentence-level encoding could facilitate transfer to other
tasks (Dagan et al.’s (2006) vision).

34 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Sentence-encoding RNNs

35 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

PyTorch strategy: Sentence-encoding RNNs
The full implementation is in nli_02_models.ipynb.

TorchRNNSentenceEncoderDataset
This is conceptually a list of pairs of sequences, each with
their lengths, and a label vector:
�

�

[every,dog,danced], [every,poodle,moved]
�

, (3,3),entailment

�

TorchRNNSentenceEncoderClassifierModel
This is concetually a premise RNN and a hypothesis RNN. The
forward method uses them to process the two parts of the
example, concatenate the outputs of those passes, and feed
them into a classifier.

TorchRNNSentenceEncoderClassifier
This is basically unchanged from its super class
TorchRNNClassifier, except the predict_proba method
needs to deal with the new example format.

36 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Sentence-encoding TreeNNs

37 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Chained models

1. Overview
2. SNLI and MultiNLI
3. Hand-built features
4. nli.experiment
5. Sentence-encoding models
6. Chained models
7. Attention
8. Error analysis

38 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Simple RNN

Whh WhhWhh Whh
Whh Whh

Why

Wxh Wxh Wxh WxhWxh Wxh

every dog danced every poodle moved

x3 x2 x1 x3 x5 x4

h1 h2 h3 h4 h5 h6

y

h0

Recurrent architectures: simple classifiers

39 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Rationale for sentence-encoding models

1. The premise truly establishes the context for the
hypothesis.

2. Might be seen as corresponding to a real processing
model.

40 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Code snippet: Simple RNN

nli_code08_solved

April 20, 2019

In [1]: import nli
import os
from torch_rnn_classifier import TorchRNNClassifier
import utils

In [2]: SNLI_HOME = os.path.join("data", "nlidata", "snli_1.0")

In [3]: # Consider adding a fixed boundary symbol between premise and hypothesis.
def simple_chained_rep_rnn_phi(t1, t2):

return t1.leaves() + t2.leaves()

In [4]: def fit_simple_chained_rnn(X, y):
vocab = utils.get_vocab(X, n_words=10000)
mod = TorchRNNClassifier(vocab, hidden_dim=50, max_iter=50)
mod.fit(X, y)
return mod

In [5]: simple_chained_rnn_experiment = nli.experiment(
nli.SNLITrainReader(SNLI_HOME, samp_percentage=0.10),
simple_chained_rep_rnn_phi,
fit_simple_chained_rnn,
vectorize=False)

Finished epoch 50 of 50; error is 2.0510222502052784

precision recall f1-score support

contradiction 0.553 0.564 0.559 5423
entailment 0.586 0.590 0.588 5555

neutral 0.550 0.536 0.543 5510

micro avg 0.563 0.563 0.563 16488
macro avg 0.563 0.563 0.563 16488

weighted avg 0.563 0.563 0.563 16488

1

41 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Premise and hypothesis RNNs

The PyTorch implementation strategy is similar to the one outlined earlier
for sentence-encoding RNNs, except the final hidden state of the premise
RNN becomes the initial hidden state for the hypothesis RNN.

42 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Attention

1. Overview
2. SNLI and MultiNLI
3. Hand-built features
4. nli.experiment
5. Sentence-encoding models
6. Chained models
7. Attention
8. Error analysis

43 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Guiding ideas

1. We need more connections between premise and
hypothesis.

2. In processing the hypothesis, the model needs
“reminders” of what the premise contained; the final
premise hidden state isn’t enough.

3. Soft alignment between premise and hypothesis – a
neural interpretation of an old idea in NLI.

44 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

h1 h2 h3 hA hB hC

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([κ;hC]Wκ)

or h̃ = tanh(κWκ + hCWh)

context κ =mean(α1h1, α2h2, α3h3)

attention weights α = softmax(α̃)

scores α̃ =

�

h>
C

h1 h>
C

h2 h>
C

h3

�

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

h1 h2 h3 hA hB hC

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([κ;hC]Wκ)

or h̃ = tanh(κWκ + hCWh)

context κ =mean(α1h1, α2h2, α3h3)

attention weights α = softmax(α̃)

scores α̃ =

�

h>
C

h1 h>
C

h2 h>
C

h3

�

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

h1 h2 h3 hA hB hC

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([κ;hC]Wκ)

or h̃ = tanh(κWκ + hCWh)

context κ =mean(α1h1, α2h2, α3h3)

attention weights α = softmax(α̃)

scores α̃ =

�

h>
C

h1 h>
C

h2 h>
C

h3

�

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

h1 h2 h3 hA hB hC

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([κ;hC]Wκ)

or h̃ = tanh(κWκ + hCWh)

context κ =mean(α1h1, α2h2, α3h3)

attention weights α = softmax(α̃)

scores α̃ =

�

h>
C

h1 h>
C

h2 h>
C

h3

�

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

h1 h2 h3 hA hB hC

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([κ;hC]Wκ) or h̃ = tanh(κWκ + hCWh)

context κ =mean(α1h1, α2h2, α3h3)

attention weights α = softmax(α̃)

scores α̃ =

�

h>
C

h1 h>
C

h2 h>
C

h3

�

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

h1 h2 h3 hA hB hC

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([κ;hC]Wκ)

or h̃ = tanh(κWκ + hCWh)

context κ =mean(α1h1, α2h2, α3h3)

attention weights α = softmax(α̃)

scores α̃ =

�

h>
C

h1 h>
C

h2 h>
C

h3

�

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

h1 h2 h3 hA hB hC

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([0.07,0.11,0.1,0.2]Wκ)

context κ =mean(.35 · [.4, .6], .33 · [.2, .4], .31 · [.1, .1])

attention weights α = [0.35,0.33,0.31]

scores α̃ = [0.16,0.10,0.03]

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1] [0.1, 0.2]

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([0.07,0.11,0.1,0.2]Wκ)

context κ =mean(.35 · [.4, .6], .33 · [.2, .4], .31 · [.1, .1])

attention weights α = [0.35,0.33,0.31]

scores α̃ = [0.16,0.10,0.03]

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1] [0.1, 0.2]

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([0.07,0.11,0.1,0.2]Wκ)

context κ =mean(.35 · [.4, .6], .33 · [.2, .4], .31 · [.1, .1])

attention weights α = [0.35,0.33,0.31]

scores α̃ = [0.16,0.10,0.03]

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1] [0.1, 0.2]

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([0.07,0.11,0.1,0.2]Wκ)

context κ =mean(.35 · [.4, .6], .33 · [.2, .4], .31 · [.1, .1])

attention weights α = [0.35,0.33,0.31]

scores α̃ = [0.16,0.10,0.03]

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1] [0.1, 0.2]

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([0.07,0.11,0.1,0.2]Wκ)

context κ =mean(.35 · [.4, .6], .33 · [.2, .4], .31 · [.1, .1])

attention weights α = [0.35,0.33,0.31]

scores α̃ = [0.16,0.10,0.03]

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1] [0.1, 0.2]

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Global attention

classifier y = softmax(h̃W + b)

attention combo h̃ = tanh([0.07,0.11,0.1,0.2]Wκ)

context κ =mean(.35 · [.4, .6], .33 · [.2, .4], .31 · [.1, .1])

attention weights α = [0.35,0.33,0.31]

scores α̃ = [0.16,0.10,0.03]

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1] [0.1, 0.2]

45 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Other scoring functions (Luong et al. 2015)

score(hC,hi) =























h>
C

hi dot

h>
C

Wαhi general

Wα[hC;hi] concat

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

h1 h2 h3 hA hB hC

46 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Word-by-word attention

classifier input h̃ = tanh([κC;hC]Wκ)

context at B κB =





0.4 0.6
0.2 0.4
0.1 0.1



αB + tanh (κAWα)

weights at B αB = softmax(Mw)

M = tanh









0.4 0.6
0.2 0.4
0.1 0.1



+





0.2 0.3 κA
0.2 0.3 κA
0.2 0.3 κA



Wh





dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1]
A

[0.2, 0.4]
B

[0.2, 0.3]
C

[0.1, 0.2]

47 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Word-by-word attention

classifier input h̃ = tanh([κC;hC]Wκ)

context at B κB =





0.4 0.6
0.2 0.4
0.1 0.1



αB + tanh (κAWα)

weights at B αB = softmax(Mw)

M = tanh









0.4 0.6
0.2 0.4
0.1 0.1



+





0.2 0.3 κA
0.2 0.3 κA
0.2 0.3 κA



Wh





dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1]
A

[0.2, 0.4]
B

[0.2, 0.3]
C

[0.1, 0.2]

47 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Word-by-word attention

classifier input h̃ = tanh([κC;hC]Wκ)

context at B κB =





0.4 0.6
0.2 0.4
0.1 0.1



αB + tanh (κAWα)

weights at B αB = softmax(Mw)

M = tanh









0.4 0.6
0.2 0.4
0.1 0.1



+





0.2 0.3 κA
0.2 0.3 κA
0.2 0.3 κA



Wh





dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1]
A

[0.2, 0.4]
B

[0.2, 0.3]
C

[0.1, 0.2]

47 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Word-by-word attention

classifier input h̃ = tanh([κC;hC]Wκ)

context at B κB =





0.4 0.6
0.2 0.4
0.1 0.1



αB + tanh (κAWα)

weights at B αB = softmax(Mw)

M = tanh









0.4 0.6
0.2 0.4
0.1 0.1



+





0.2 0.3 κA
0.2 0.3 κA
0.2 0.3 κA



Wh





dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1]
A

[0.2, 0.4]
B

[0.2, 0.3]
C

[0.1, 0.2]

47 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Word-by-word attention

classifier input h̃ = tanh([κC;hC]Wκ)

context at B κB =





0.4 0.6
0.2 0.4
0.1 0.1



αB + tanh (κAWα)

weights at B αB = softmax(Mw)

M = tanh









0.4 0.6
0.2 0.4
0.1 0.1



+





0.2 0.3 κA
0.2 0.3 κA
0.2 0.3 κA



Wh





dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

[0.4, 0.6] [0.2, 0.4] [0.1, 0.1]
A

[0.2, 0.4]
B

[0.2, 0.3]
C

[0.1, 0.2]

47 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Other variants
• Local attention (Luong et al. 2015) builds connections

between selected points in the premise and hypothesis.

• Word-by-word attention can be set up in many ways,
with many more learned parameters than my simple
example. A pioneering instance for NLI is Rocktäschel
et al. 2016.

• The attention representation at time t could be appended
to the hidden representation at t + 1 (Luong et al. 2015).

• Vaswani et al. (2017) use attention for their primary
connections, a reversal of the usual pattern.

• Memory networks (Weston et al. 2015) can be used to
address similar issues related to properly recalling past
experiences.

48 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Error analysis

1. Overview
2. SNLI and MultiNLI
3. Hand-built features
4. nli.experiment
5. Sentence-encoding models
6. Chained models
7. Attention
8. Error analysis

49 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

MultiNLI annotations

Annotations Premise Relation Hypothesis

#MODAL,
#COREF

Students of human
misery can savor its
underlying sadness
and futility. entailment

entailment Those who study
human misery will
savor the sadness and
futility.

#NEGATION,
#TENSE_
DIFFERENCE,
#CONDITIONAL

oh really it wouldn’t
matter if we plant
them when it was
starting to get warmer

contradiction It is better to plant
when it is colder.

#QUANTIFIER,
#AC-
TIVE/PASSIVE

They consolidated
programs to increase
efficiency and deploy
resources more
effectively

entailment Programs to increase
efficiency were
consolidated.

50 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Matched MultiNLI annotations

Model Features Macro-F1

Logistic regression cross-product 0.58

Chained LSTM random embedding 0.55

Sentence-encoding LSTM random embedding 0.51

• Logistic regression tuned hyperparameters: C (0.1 to 1.2 by 0.1) and
penalty (L1, L2). Model file is ≈ 600MB; ≈ 16M features.

• LSTM tuned hyperparameters: embed_dim (50, 100), hidden_dim (50,
100, 150), learning rate (0.001, 0.01, 0.05), and activation function
(Tanh, ReLU). Model files are ≈ 1MB each.

51 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

MultiNLI annotations: LSTMs by category

All models more correct than incorrect

0 2 4 6 8 10 12
Examples

Encoding

Chained

LogisticRegression

#ACTIVE/PASSIVE
correct
incorrect

0 2 4 6 8 10
Examples

Encoding

Chained

LogisticRegression

#ANTO
correct
incorrect

0 5 10 15 20 25 30 35 40
Examples

Encoding

Chained

LogisticRegression

#BELIEF
correct
incorrect

0 2 4 6 8 10 12 14
Examples

Encoding

Chained

LogisticRegression

#CONDITIONAL
correct
incorrect

0 10 20 30 40 50 60
Examples

Encoding

Chained

LogisticRegression

#LONG_SENTENCE
correct
incorrect

0 20 40 60 80 100
Examples

Encoding

Chained

LogisticRegression

#MODAL
correct
incorrect

0 10 20 30 40 50 60 70
Examples

Encoding

Chained

LogisticRegression

#NEGATION
correct
incorrect

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

52 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

MultiNLI annotations: LSTMs by category

All models more incorrect than correct

0 2 4 6 8 10
Examples

Encoding

Chained

LogisticRegression

#QUANTITY/TIME_REASONING

correct
incorrect

52 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

MultiNLI annotations: LSTMs by category

Only Logistic Regression more correct than incorrect

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Examples

Encoding

Chained

LogisticRegression

#COREF
correct
incorrect

0 5 10 15 20 25 30
Examples

Encoding

Chained

LogisticRegression

#TENSE_DIFFERENCE
correct
incorrect

52 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

MultiNLI annotations: LSTMs by category

Only chained LSTM more correct than incorrect

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Examples

Encoding

Chained

LogisticRegression

#WORD_OVERLAP
correct
incorrect

52 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

MultiNLI annotations: LSTMs by category

Only sentence-encoding LSTM more incorrect than
correct

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Examples

Encoding

Chained

LogisticRegression

#PARAPHRASE
correct
incorrect

0 10 20 30 40 50 60 70
Examples

Encoding

Chained

LogisticRegression

#QUANTIFIER
correct
incorrect

(There were no categories in which only the
sentence-encoding LSTM was more correct than incorrect.)

52 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Testing for specific patterns

Does your model know that negation is downward
monotone?

Fido moved.
↑

Fido ran.

Fido didn’t move.
↓

Fido didn’t run.

Does your model know that every is downward monotone on
its first argument and upward monotone on its second?

Every dog moved.
↙ ↖

Every puppy moved. Every dog ran.

Does your model systematically capture such patterns?

53 / 57

Overview SNLI and MultiNLI Hand-built features nli.experiment Sentence-encoding Chained Attention Error analysis

Probing with artificial data

Negation (after MacCartney & Manning 2007)

not-p,not-q p,not-q not-p,q

p disjoint q neutral subset superset
p equal q equal disjoint disjoint

p neutral q neutral neutral neutral
p subset q superset disjoint neutral

p superset q subset neutral disjoint

p
q

r

s

The issue
If your model does perfectly on a doubly negated dataset,
will its performance generalize to triply negated cases? This
would be evidence that it had truly learned the algebra of
negation. See Bowman et al. 2015b; Evans et al. 2018;
Geiger et al. 2018.

54 / 57

References

References I
Bos, Johan & Katja Markert. 2005. Recognising textual entailment with logical inference. In Proceedings of human

language technology conference and conference on empirical methods in natural language processing, 628–635.
Stroudsburg, PA: ACL.

Bowman, Samuel R., Gabor Angeli, Christopher Potts & Christopher D. Manning. 2015a. Learning natural language
inference from a large annotated corpus. In Proceedings of the 2015 conference on Empirical Methods in Natural
Language Processing, 632–642. Stroudsburg, PA: Association for Computational Linguistics.

Bowman, Samuel R., Christopher Potts & Christopher D. Manning. 2015b. Recursive neural networks can learn logical
semantics. In Proceedings of the 3rd workshop on continuous vector space models and their compositionality,
Stroudsburg, PA: Association for Computational Linguistics.

Crouch, Richard, Lauri Karttunen & Annie Zaenen. 2006. Circumscribing is not excluding: A reply to Manning. Ms., Palo
Alto Research Center.

Dagan, Ido, Oren Glickman & Bernardo Magnini. 2006. The PASCAL recognising textual entailment challenge. In
J. Quinonero-Candela, I. Dagan, B. Magnini & F. d’Alché Buc (eds.), Machine learning challenges, lecture notes in
computer science, vol. 3944, 177–190. Springer-Verlag.

Evans, Richard, David Saxton, David Amos, Pushmeet Kohli & Edward Grefenstette. 2018. Can neural networks
understand logical entailment? arXiv:1802.08535 .

Geiger, Atticus, Ignacio Cases, Lauri Karttunen & Christopher Potts. 2018. Stress-testing neural models of natural
language inference with multiply-quantified sentences. Ms., Stanford University. arXiv 1810.13033.

Goldberg, Yoav. 2015. A primer on neural network models for natural language processing. Ms., Bar Ilan University.
Gururangan, Suchin, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman & Noah A. Smith. 2018.

Annotation artifacts in natural language inference data. In Proceedings of the 2018 conference of the north american
chapter of the association for computational linguistics: Human language technologies, volume 2 (short papers),
107–112. New Orleans, Louisiana: Association for Computational Linguistics. doi:10.18653/v1/N18-2017.
https://www.aclweb.org/anthology/N18-2017.

Hickl, Andrew & Jeremy Bensley. 2007. A discourse commitment-based framework for recognizing textual entailment. In
Proceedings of the workshop on textual entailment and paraphrasing, .

Luong, Thang, Hieu Pham & Christopher D. Manning. 2015. Effective approaches to attention-based neural machine
translation. In Proceedings of the 2015 conference on empirical methods in natural language processing, 1412–1421.
Lisbon, Portugal: Association for Computational Linguistics. doi:10.18653/v1/D15-1166.
https://www.aclweb.org/anthology/D15-1166.

MacCartney, Bill. 2009. Natural language inference: Stanford University dissertation.
MacCartney, Bill & Christopher D. Manning. 2007. Natural logic for textual inference. In Proceedings of the ACL-PASCAL

workshop on textual entailment and paraphrasing, 193–200. Prague: Association for Computational Linguistics.
http://www.aclweb.org/anthology/W/W07/W07-1431.

55 / 57

https://www.aclweb.org/anthology/N18-2017
https://www.aclweb.org/anthology/D15-1166
http://www.aclweb.org/anthology/W/W07/W07-1431

References

References II
MacCartney, Bill & Christopher D. Manning. 2008. Modeling semantic containment and exclusion in natural language

inference. In Proceedings of the 22nd international conference on computational linguistics (coling 2008), 521–528.
Manchester, UK: Coling 2008 Organizing Committee. http://www.aclweb.org/anthology/C08-1066.

MacCartney, Bill & Christopher D. Manning. 2009. An extended model of natural logic. In Proceedings of the eighth
international conference on computational semantics, 140–156. Tilburg, The Netherlands: Association for
Computational Linguistics. http://www.aclweb.org/anthology/W09-3714.

Manning, Christopher D. 2006. Local textual inference: It’s hard to circumscribe, but you know it when you see it – and
NLP needs it. Ms., Stanford University.

de Marneffe, Marie-Catherine, Bill MacCartney, Trond Grenager, Daniel Cer, Anna Rafferty & Christopher D Manning. 2006.
Learning to distinguish valid textual entailments. In Proceedings of the 2nd pascal rte challenge workshop, .

Pado, Sebastian, Tae-Gil Noh, Asher Stern & Rui Wang. 2013. Design and realization of a modular architecture for textual
entailment. Journal of Natural Language Engineering. 21(2). 167–200. doi:10.1017/S1351324913000351.

Poliak, Adam, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger & Benjamin Van Durme. 2018. Hypothesis only
baselines in natural language inference. In Proceedings of the seventh joint conference on lexical and computational
semantics, 180–191. New Orleans, Louisiana: Association for Computational Linguistics.
http://www.aclweb.org/anthology/S18-2023.

Rocktäschel, Tim, Edward Grefenstette, Karl Moritz Hermann, Tomás Kočiský & Phil Plunsom. 2016. Reasoning about
entailment with neural attention. ArXiv:1509.06664.

Rudinger, Rachel, Chandler May & Benjamin Van Durme. 2017. Social bias in elicited natural language inferences. In
Proceedings of the first acl workshop on ethics in natural language processing, 74–79. Valencia, Spain: Association for
Computational Linguistics. http://www.aclweb.org/anthology/W17-1609.

Tsuchiya, Masatoshi. 2018. Performance impact caused by hidden bias of training data for recognizing textual entailment.
In Proceedings of the 11th language resources and evaluation conference, Miyazaki, Japan: European Language
Resource Association. https://www.aclweb.org/anthology/L18-1239.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser & Illia
Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan & R. Garnett (eds.), Advances in neural information processing systems 30, 5998–6008. Curran
Associates, Inc. http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Weston, Jason, Sumit Chopra & Antoine Bordes. 2015. Memory networks. In Proceedings of ICLR 2015, .
Williams, Adina, Nikita Nangia & Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding

through inference. In Proceedings of the 2018 conference of the north american chapter of the association for
computational linguistics: Human language technologies, volume 1 (long papers), 1112–1122. Association for
Computational Linguistics. doi:10.18653/v1/N18-1101. http://aclweb.org/anthology/N18-1101.

56 / 57

http://www.aclweb.org/anthology/C08-1066
http://www.aclweb.org/anthology/W09-3714
http://www.aclweb.org/anthology/S18-2023
http://www.aclweb.org/anthology/W17-1609
https://www.aclweb.org/anthology/L18-1239
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://aclweb.org/anthology/N18-1101

References

References III

Young, Peter, Alice Lai, Micah Hodosh & Julia Hockenmaier. 2014. From image descriptions to visual denotations: New
similarity metrics for semantic inference over event descriptions. Transactions of the Association for Computational
Linguistics 2. 67–78.

Zaenen, Annie, Lauri Karttunen & Richard Crouch. 2005. Local textual inference: Can it be defined or circumscribed? In
Proceedings of the ACL workshop on empirical modeling of semantic equivalence and entailment, 31–36. Ann Arbor,
MI: Association for Computational Linguistics. http://www.aclweb.org/anthology/W/W05/W05-1206.

57 / 57

http://www.aclweb.org/anthology/W/W05/W05-1206

	Overview
	Associated materials
	Simple examples
	NLI task formulation
	Connections to other tasks
	Models for NLI
	Other NLI datasets
	Label sets
	Hypothesis-only baselines

	SNLI and MultiNLI
	SNLI
	Crowdsourcing methods
	Examples
	Event coreference
	MultiNLI
	MultiNLI annotations
	Code snippets: Readers and Example objects
	Code snippets: MultiNLI annotations

	Hand-built features
	Word overlap and word-cross product
	WordNet features
	Other hand-built features
	Combining dense and sparse representations

	nli.experiment
	Complete experiment with nli.experiment
	Hyperparameter selection on train subsets
	Hyperparameter selection with a few iterations
	A hypothesis-only experiment
	A premise-only experiment

	Sentence-encoding models
	Distributed representations as features
	Code: Distributed representations as features
	Rationale for sentence-encoding models
	Sentence-encoding RNNs
	PyTorch strategy: Sentence-encoding RNNs
	Sentence-encoding TreeNNs

	Chained models
	Simple RNN
	Rationale for sentence-encoding models
	Code snippet: Simple RNN
	Premise and hypothesis RNNs

	Attention
	Guiding ideas
	Global attention
	Other scoring functions (Luong et al. 2015)
	Word-by-word attention
	Other variants

	Error analysis
	MultiNLI annotations
	Matched MultiNLI annotations
	MultiNLI annotations: LSTMs by category
	Testing for specific patterns
	Probing with artificial data

	References
	References

