Contextual word representations

Christopher Potts

Stanford Linguistics

CS 224U: Natural language understanding
 May 20

Overview

1. Overview: Resources and guiding insights
2. ELMo: Embeddings from Language Models
3. Transformers
4. BERT: Bidirectional Encoder Representations from Transformers
5. contextualreps.ipynb: Easy ways to bring ELMo and BERT into your project

Associated materials

1. Notebook: contextualreps.ipynb
2. Smith 2019
3. CS224n lecture: slides and YouTube version
4. ELMo:

- Peters et al. 2018
- Project site: https://allennlp.org/elmo

5. Transformer

- Vaswani et al. 2017
- Alexander Rush: The Annotated Transformer [link]

6. BERT

- Devlin et al. 2019
- Project site: https://github.com/google-research/bert
- bert-as-service [link]

Word representations and context

Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.
g. The newscaster broke into the movie broadcast.
h. We broke even.

Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.
g. The newscaster broke into the movie broadcast.
h. We broke even.
2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit

Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.
g. The newscaster broke into the movie broadcast.
h. We broke even.
2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit
3. a. A crane caught a fish.
b. A crane picked up the steel beam.
c. I saw a crane.

Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.
g. The newscaster broke into the movie broadcast.
h. We broke even.
2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit
3. a. A crane caught a fish.
b. A crane picked up the steel beam.
c. I saw a crane.
4. a. Are there typos? I didn't see any.
b. Are there bookstores downtown? I didn't see any.

Model structure and linguistic structure

Guiding idea: Attention (from the NLI slides)

Guiding idea: Attention (from the NLI slides)

Guiding idea: Attention (from the NLI slides)

attention weights $\quad \alpha=\boldsymbol{\operatorname { s o f t m a x }}(\tilde{\alpha})$

$$
\text { scores } \quad \tilde{\alpha}=\left[\begin{array}{lll}
h_{C}^{\top} h_{1} & h_{C}^{\top} h_{2} & h_{C}^{\top} h_{3}
\end{array}\right]
$$

Guiding idea: Attention (from the NLI slides)

$$
\text { context } \quad \kappa=\operatorname{mean}\left(\alpha_{1} h_{1}, \alpha_{2} h_{2}, \alpha_{3} h_{3}\right)
$$

attention weights $\quad \alpha=\boldsymbol{\operatorname { s o f t m a x }}(\tilde{\alpha})$

$$
\text { scores } \quad \tilde{\alpha}=\left[\begin{array}{lll}
h_{C}^{\top} h_{1} & h_{C}^{\top} h_{2} & h_{C}^{\top} h_{3}
\end{array}\right]
$$

Guiding idea: Attention (from the NLI slides)

attention combo $\quad \tilde{h}=\tanh \left(\left[K ; h_{C}\right] W_{K}\right)$

$$
\text { context } \quad \kappa=\operatorname{mean}\left(\alpha_{1} h_{1}, \alpha_{2} h_{2}, \alpha_{3} h_{3}\right)
$$

attention weights $\quad \alpha=\boldsymbol{\operatorname { s o f t m a x }}(\tilde{\alpha})$

$$
\text { scores } \quad \tilde{\alpha}=\left[\begin{array}{lll}
h_{C}^{\top} h_{1} & h_{C}^{\top} h_{2} & h_{C}^{\top} h_{3}
\end{array}\right]
$$

Guiding idea: Attention (from the NLI slides)

attention combo $\tilde{h}=\tanh \left(\left[\kappa ; h_{C}\right] W_{K}\right)$ or $\tilde{h}=\tanh \left(\kappa W_{\kappa}+h_{C} W_{h}\right)$

$$
\text { context } \quad \kappa=\operatorname{mean}\left(\alpha_{1} h_{1}, \alpha_{2} h_{2}, \alpha_{3} h_{3}\right)
$$

attention weights $\quad \alpha=\boldsymbol{\operatorname { s o f t m a x }}(\tilde{\alpha})$

$$
\text { scores } \quad \tilde{\alpha}=\left[\begin{array}{lll}
h_{C}^{\top} h_{1} & h_{C}^{\top} h_{2} & h_{C}^{\top} h_{3}
\end{array}\right]
$$

Guiding idea: Attention (from the NLI slides)

$$
\text { classifier } \quad y=\operatorname{softmax}(\tilde{h} W+b)
$$

attention combo $\tilde{h}=\tanh \left(\left[\kappa ; h_{C}\right] W_{K}\right)$

$$
\text { context } \quad \kappa=\operatorname{mean}\left(\alpha_{1} h_{1}, \alpha_{2} h_{2}, \alpha_{3} h_{3}\right)
$$

attention weights $\quad \alpha=\boldsymbol{\operatorname { s o f t m a x }}(\tilde{\alpha})$

$$
\text { scores } \quad \tilde{\alpha}=\left[\begin{array}{lll}
h_{C}^{\top} h_{1} & h_{C}^{\top} h_{2} & h_{C}^{\top} h_{3}
\end{array}\right]
$$

Guiding idea: Subword modeling

Guiding idea: Subword modeling

Max-pooling layers concatenated to form the word representation.

Guiding idea: Positional encoding

Guiding idea: Positional encoding

ELMo

1. Overview: Resources and guiding insights
2. ELMo: Embeddings from Language Models
3. Transformers
4. BERT: Bidirectional Encoder Representations from Transformers
5. contextualreps.ipynb: Easy ways to bring ELMo and BERT into your project

0000

Core model structure

Core model structure

```
rules
```


Core model structure

Core model structure

Word embeddings

Word embeddings

Word embeddings

A series of convolutional filters with max pooling, concatenated to form the initial representation

Word embeddings

A series of convolutional filters with max pooling, concatenated to form the initial representation

Word embeddings

A series of convolutional filters with max pooling, concatenated to form the initial representation

Word embeddings

Word embeddings

Word embeddings

Word embeddings

ELMo model releases

	LSTM			
Model	Parameters	Hidden size	Output size	Highway layers
Small	13.6 M	1024	128	1
Medium	28.0 M	2048	256	1
Original	93.6 M	4096	512	2
Original (5.5B)	93.6 M	4096	512	2

Additional details at https://allennlp.org/elmo; the options files reveal additional information about the subword convolutional filters, activation functions, thresholds, and layer dimensions.

Transformers

1. Overview: Resources and guiding insights
2. ELMo: Embeddings from Language Models
3. Transformers
4. BERT: Bidirectional Encoder Representations from Transformers
5. contextualreps.ipynb: Easy ways to bring ELMo and BERT into your project

Core model structure

Multi-headed attention

Multi-headed attention

Multi-headed attention

$$
\begin{aligned}
\mathrm{c}_{\text {attn } 1} & =\operatorname{sum}\left(\left[\alpha_{1}\left(\mathrm{a}_{\text {input }} W_{1}^{V}\right), \alpha_{2}\left(\mathrm{~b}_{\text {input }} W_{1}^{V}\right)\right]\right) \\
\alpha & =\operatorname{softmax}(\tilde{\alpha}) \\
\tilde{\alpha} & =\left[\frac{\left(\mathrm{c}_{\text {input }} W_{1}^{Q}\right)^{\top}\left(\mathrm{a}_{\text {input }} W_{1}^{K}\right)}{\sqrt{d_{k}}}, \frac{\left(\mathrm{c}_{\text {input }} W_{1}^{Q}\right)^{\top}\left(\mathrm{b}_{\text {input }} W_{1}^{K}\right)}{\sqrt{d_{k}}}\right]
\end{aligned}
$$

Multi-headed attention

Repeated transformer blocks

The architecture diagram

Figure 1: The Transformer - model architecture.

The architecture diagram

Figure 1: The Transformer - model architecture.

The architecture diagram

Each decoder state self-attends with all of its fellow decoder states and with all the encoder states.

The left side is repeated for every state in the encoder.

Output

Figure 1: The Transformer - model architecture.

The architecture diagram

Each decoder state self-attends with all of its fellow decoder states and with all the encoder states.

The left side is repeated for every state in the encoder.

Output

The right side is repeated for every decoder state, with outputs for each state that has them (all of them for dialogue and machine translation, only the final one for NLI).

Figure 1: The Transformer - model architecture.

The architecture diagram

Each decoder state self-attends with all of its fellow decoder states and with all the encoder states.

The left side is repeated for every state in the encoder.

Output

Figure 1: The Transformer - model architecture.

BERT

1. Overview: Resources and guiding insights
2. ELMo: Embeddings from Language Models
3. Transformers
4. BERT: Bidirectional Encoder Representations from Transformers
5. contextualreps.ipynb: Easy ways to bring ELMo and BERT into your project

Core model structure

Core model structure

Masked Language Modeling (MLM)

Transfer learning and fine-tuning

Binary sentence prediction pretraining

Positive: Actual sentence sequences

- [CLS] the man went to [MASK] store [SEP]
- he bought a gallon [MASK] milk [SEP]
- Label: IsNext

Negative: Randomly chosen second sentence

- [CLS] the man went to [MASK] store [SEP]
- penguin [MASK] are flight \#\#less birds [SEP]
- Label: NotNext

Tokenization and the BERT embedding space

```
In [1]: import random
    # In the code from https://github.com/google-research/bert
    from tokenization import FullTokenizer
In [2]: vocab_filename = "uncased_L-12_H-768_A-12/vocab.txt"
In [3]: with open(vocab_filename) as f:
    vocab = f.read().splitlines()
In [4]: len(vocab)
Out [4]: 30522
In [5]: random.sample(vocab, 5)
Out[5]: ['folder', '##gged', 'principles', 'moving', '##ceae']
In [6]: tokenizer = FullTokenizer(vocab_file=vocab_filename, do_lower_case=True)
In [7]: tokenizer.tokenize("This isn't too surprising!")
Out[7]: ['this', 'isn', "'", 't', 'too', 'surprising', '!']
In [8]: tokenizer.tokenize("Does BERT know Snuffleupagus?")
Out[8]: ['does', 'bert', 'know', 's', '##nu', '##ffle', '##up', '##ag', '##us', '?']
```


BERT model releases

Base

- Transformer layers: 12
- Hidden representations: 768 dimensions
- Attention heads: 12
- Total parameters: 110M

Large

- Transformer layers: 24
- Hidden representations: 1024 dimensions
- Attention heads: 16
- Total parameters: 340M

Limited to sequences of 512 tokens due to dimensionality of the positional embeddings.

contextualreps.ipynb

1. Overview: Resources and guiding insights
2. ELMo: Embeddings from Language Models
3. Transformers
4. BERT: Bidirectional Encoder Representations from Transformers
5. contextualreps.ipynb: Easy ways to bring ELMo and BERT into your project

Guiding idea

- Your existing architecture can benefit from contextual representations.
- contextualreps.ipynb shows you how to bring in ELMo and BERT representations.
- You don't get the benefits of fine-tuning (for that, you need to integrate more fully with ELMo and BERT code), but you still get a reliable boost!

Standard RNN dataset preparation

Examples	$[\mathrm{a}, \mathrm{b}, \mathrm{a}]$		Embedding			
	$[\mathrm{b}, \mathrm{c}]$	-0.42	0.10	0.12		
	\Downarrow	2	-0.16	-0.21	0.29	
	\Downarrow	-0.26	0.31	0.37		

Indices
$[1,2,1]$
[2, 3]
\Downarrow
Vectors $\quad\left[\begin{array}{llllll}-0.42 & 0.10 & 0.12\end{array}\right],[-0.16-0.210 .29],\left[\begin{array}{llll}-0.42 & 0.10 & 0.12\end{array}\right]$
$\left[\begin{array}{lllll}-0.16 & -0.21 & 0.29]\end{array}\right]\left[\begin{array}{llll}-0.26 & 0.31 & 0.37\end{array}\right]$

RNN contextual representation inputs

Examples $\begin{gathered}{[a, b, a]} \\ {[b, c]} \\ \Downarrow\end{gathered}$
Vectors $\left.\quad\left[\begin{array}{lllllll}-0.41 & -0.08 & 0.27\end{array}\right],\left[\begin{array}{lllll}0.17 & -0.22 & 0.78\end{array}\right][-0.46 \quad 0.240 .12]\right]$
$\left[\begin{array}{lllll}{[-0.02} & -0.56 & 0.11\end{array}\right]\left[\begin{array}{llll}-0.45 & 0.43 & 0.32\end{array}\right]$

Code snippet: ELMo RNN inputs

```
In [1]: from allennlp.commands.elmo import ElmoEmbedder
    import os
    import sst
    from torch_rnn_classifier import TorchRNNClassifier
In [2]: SST_HOME = os.path.join("data", "trees")
In [3]: elmo = ElmoEmbedder()
In [4]: def elmo_phi(tree):
    vecs = elmo.embed_sentence(tree.leaves())
    return vecs.mean(axis=0)
In [5]: def fit_rnn(X, y):
    mod = TorchRNNClassifier(vocab=[], max_iter=50, use_embedding=False)
    mod.fit(X, y)
    return mod
```


Code snippet: ELMo RNN inputs

```
In [6]: elmo_experiment = sst.experiment(
    SST_HOME,
    elmo_phi,
    fit_rnn,
    train_reader=sst.train_reader,
    assess_reader=sst.dev_reader,
    vectorize=False)
Finished epoch 50 of 50 ; error is 0.07357715629041195
precision recall f1-score support
\begin{tabular}{rllll} 
negative & 0.700 & 0.687 & 0.693 & 428 \\
neutral & 0.353 & 0.284 & 0.315 & 229 \\
positive & 0.710 & 0.795 & 0.750 & 444
\end{tabular}
\(\begin{array}{lllll}\text { micro avg } & 0.647 & 0.647 & 0.647 & 1101\end{array}\)
\begin{tabular}{lllll} 
macro avg & 0.588 & 0.589 & 0.586 & 1101
\end{tabular}
\begin{tabular}{lllll} 
weighted avg & 0.632 & 0.647 & 0.638 & 1101
\end{tabular}
```


Code snippet: BERT RNN inputs

```
In [1]: # bert-serving-start -model_dir data/bert/uncased_L-12_H-768_A-12/ ।
    # -pooling_strategy NONE -max_seq_len NONE -show_tokens_to_client
    from bert_serving.client import BertClient
    import os
    import sst
    from torch_rnn_classifier import TorchRNNClassifier
In [2]: SST_HOME = os.path.join("data", "trees")
In [3]: # Load the train and dev sets as strings, to let BERT tokenize:
    sst_train = [(" ".join(t.leaves()), label) for t, label in sst.train_reader(SST_HOME)]
    sst_dev = [(" ".join(t.leaves()), label) for t, label in sst.dev_reader(SST_HOME)]
In [4]: X_str_train, y_train = zip(*sst_train)
    X_str_dev, y_dev = zip(*sst_dev)
In [5]: X_str_dev, y_dev = zip(*sst_dev)
```


Code snippet: BERT RNN inputs

```
In [6]: bc = BertClient(check_length=False)
In [7]: # Prefetch all the BERT representations:
    X_bert_train = bc.encode(list(X_str_train), show_tokens=False)
    X_bert_dev = bc.encode(list(X_str_dev), show_tokens=False)
In [8]: # Create a look-up for fast featurization:
    BERT_LOOKUP = {}
    for sents, reps in ((X_str_train, X_bert_train), (X_str_dev, X_bert_dev)):
        assert len(sents) == len(reps)
        for s, rep in zip(sents, reps):
            BERT_LOOKUP[s] = rep
```


Code snippet: BERT RNN inputs

```
In [9]: def bert_phi(tree):
    s = " ".join(tree.leaves())
    return BERT_LOOKUP[s]
```

In [10]: def fit_rnn(X, y):
mod $=$ TorchRNNClassifier(vocab=[], max_iter=50, use_embedding=False)
mod.fit(X, y)
return mod
In [11]: bert_rnn_experiment = sst.experiment(
SST_HOME,
bert_phi,
fit_rnn,
train_reader=sst.train_reader,
assess_reader=sst.dev_reader,
vectorize=False)

Finished epoch 50 of 50 ; error is 2.6541710644960403

	precision	recall	f1-score	support
negative	0.767	0.668	0.714	428
neutral	0.322	0.323	0.322	229
positive	0.737	0.827	0.779	444
micro avg	0.660	0.660	0.660	1101
macro avg	0.608	0.606	0.605	1101
weighted avg	0.662	0.660	0.659	1101

References I

Devlin, Jacob, Ming-Wei Chang, Kenton Lee \& Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the north american association of computational linguistics, Stroudsburg, PA: Association for Computational Linguistics.
Peters, Matthew, Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark, Kenton Lee \& Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 conference of the north american chapter of the association for computational linguistics: Human language technologies, volume 1 (long papers), 2227-2237. Association for Computational Linguistics. http://aclweb.org/anthology/N18-1202.
Smith, Noah A. 2019. Contextual word representations: A contextual introduction. ArXiv:1902.06006v2.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser \& Illia Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan \& R. Garnett (eds.), Advances in neural information processing systems 30, 5998-6008. Curran Associates, Inc. http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

