Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Contextual word representations

Christopher Potts

Stanford Linguistics

CS 224U: Natural language understanding May 20

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
	000	0000	000000	00000

Overview

- 1. Overview: Resources and guiding insights
- 2. ELMo: Embeddings from Language Models
- 3. Transformers
- 4. BERT: Bidirectional Encoder Representations from Transformers
- contextualreps.ipynb: Easy ways to bring ELMo and BERT into your project

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
●00000	000	0000	000000	00000

Associated materials

- Notebook: contextualreps.ipynb
- 2. Smith 2019
- 3. CS224n lecture: slides and YouTube version
- 4. ELMo:
 - Peters et al. 2018
 - Project site: https://allennlp.org/elmo
- 5. Transformer
 - Vaswani et al. 2017
 - Alexander Rush: The Annotated Transformer [link]
- 6. BERT
 - Devlin et al. 2019
 - > Project site: https://github.com/google-research/bert
 - bert-as-service [link]

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
00000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
00000	000	0000	000000	00000

- 1. a. The vase broke.
 - b. Dawn broke.
 - c. The news broke.
 - d. Sandy broke the world record.
 - e. Sandy broke the law.
 - f. The burgler broke into the house.
 - g. The newscaster broke into the movie broadcast.
 - h. We broke even.

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
00000	000	0000	000000	00000

- 1. a. The vase broke.
 - b. Dawn broke.
 - c. The news broke.
 - d. Sandy broke the world record.
 - e. Sandy broke the law.
 - f. The burgler broke into the house.
 - g. The newscaster broke into the movie broadcast.
 - h. We broke even.
- 2. a. flat tire/beer/note/surface
 - b. throw a party/fight/ball/fit

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
00000	000	0000	000000	00000

- 1. a. The vase broke.
 - b. Dawn broke.
 - c. The news broke.
 - d. Sandy broke the world record.
 - e. Sandy broke the law.
 - f. The burgler broke into the house.
 - g. The newscaster broke into the movie broadcast.
 - h. We broke even.
- 2. a. flat tire/beer/note/surface
 - b. throw a party/fight/ball/fit
- 3. a. A crane caught a fish.
 - b. A crane picked up the steel beam.
 - c. I saw a crane.

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
00000	000	0000	000000	00000

- 1. a. The vase broke.
 - b. Dawn broke.
 - c. The news broke.
 - d. Sandy broke the world record.
 - e. Sandy broke the law.
 - f. The burgler broke into the house.
 - g. The newscaster broke into the movie broadcast.
 - h. We broke even.
- 2. a. flat tire/beer/note/surface
 - b. throw a party/fight/ball/fit
- 3. a. A crane caught a fish.
 - b. A crane picked up the steel beam.
 - c. I saw a crane.
- 4. a. Are there typos? I didn't see any.
 - b. Are there bookstores downtown? I didn't see any.

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
00000	000	0000	000000	00000

Model structure and linguistic structure

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

attention weights $\alpha = \mathbf{softmax}(\tilde{\alpha})$

scores
$$\tilde{\alpha} = \begin{bmatrix} h_C^{\mathsf{T}} h_1 & h_C^{\mathsf{T}} h_2 & h_C^{\mathsf{T}} h_3 \end{bmatrix}$$

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

attention combo $\tilde{h} = \tanh([\kappa; h_C]W_{\kappa})$

context $\kappa = \mathbf{mean}(\alpha_1h_1, \alpha_2h_2, \alpha_3h_3)$

attention weights

 $lpha = extbf{softmax}(ilde{lpha})$

scores
$$\tilde{\alpha} = \left[\begin{array}{cc} h_C^{\mathsf{T}} h_1 & h_C^{\mathsf{T}} h_2 & h_C^{\mathsf{T}} h_3 \end{array} \right]$$

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

attention combo $\tilde{h} = \tanh([\kappa; h_C]W_\kappa) \text{ or } \tilde{h} = \tanh(\kappa W_\kappa + h_C W_h)$

context $\kappa = \mathbf{mean}(\alpha_1h_1, \alpha_2h_2, \alpha_3h_3)$

attention weights

$$\pmb{lpha} = \mathbf{softmax}(ilde{\pmb{lpha}})$$

scores
$$\tilde{\alpha} = \begin{bmatrix} h_C^{\mathsf{T}} h_1 & h_C^{\mathsf{T}} h_2 & h_C^{\mathsf{T}} h_3 \end{bmatrix}$$

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

classifier $y = \mathbf{softmax}(\tilde{h}W + b)$

attention combo

 $\tilde{h} = \operatorname{tanh}([\kappa; h_C]W_{\kappa})$

context

 $\kappa = \mathbf{mean}(\alpha_1h_1, \alpha_2h_2, \alpha_3h_3)$

attention weights

$$lpha = extsf{softmax}(ilde{lpha})$$

scores
$$\tilde{\alpha} = \left[\begin{array}{cc} h_C^{\mathsf{T}} h_1 & h_C^{\mathsf{T}} h_2 & h_C^{\mathsf{T}} h_3 \end{array} \right]$$

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Max-pooling layers concatenated to form the word representation.

6

8 2

9 3

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
00000	000	0000	000000	00000

Guiding idea: Positional encoding

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
00000	000	0000	000000	00000

Guiding idea: Positional encoding

From 'The Annotated Transformer'

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000
ELMo				

1. Overview: Resources and guiding insights

2. ELMo: Embeddings from Language Models

3. Transformers

- 4. BERT: Bidirectional Encoder Representations from Transformers
- contextualreps.ipynb: Easy ways to bring ELMo and BERT into your project

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	•00	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	•00	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	•00	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	● ○○	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

A series of convolutional filters with max pooling, concatenated to form the initial representation

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

A series of convolutional filters with max pooling, concatenated to form the initial representation

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

A series of convolutional filters with max pooling, concatenated to form the initial representation

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

A series of convolutional filters with ••••• max pooling, concatenated to form the initial representation

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Word embeddings

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Word embeddings

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	00●	0000	000000	00000

ELMo model releases

	LSTM			
Model	Parameters	Hidden size	Output size	Highway layers
Small	13.6M	1024	128	1
Medium	28.0M	2048	256	1
Original	93.6M	4096	512	2
Original (5.5B)	93.6M	4096	512	2

Additional details at https://allennlp.org/elmo; the options files reveal additional information about the subword convolutional filters, activation functions, thresholds, and layer dimensions.

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Transformers

- 1. Overview: Resources and guiding insights
- 2. ELMo: Embeddings from Language Models

3. Transformers

- 4. BERT: Bidirectional Encoder Representations from Transformers
- contextualreps.ipynb: Easy ways to bring ELMo and BERT into your project

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	•000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	•000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	•000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	●000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	•000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	•000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	•000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0 000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	●000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	● ○○○	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

$$c_{\text{attn3}} = \text{sum} \left(\left[\alpha_1(a_{\text{input}} W_3^V), \alpha_2(b_{\text{input}} W_3^V) \right] \right) \\ \alpha = \text{softmax}(\tilde{\alpha}) \\ \tilde{\alpha} = \left[\frac{(c_{\text{input}} W_3^Q)^{\top}(a_{\text{input}} W_3^K)}{\sqrt{d_k}}, \frac{(c_{\text{input}} W_3^Q)^{\top}(b_{\text{input}} W_3^K)}{\sqrt{d_k}} \right] \\ \hline a_{\text{attn}} a_{\text{atto}} a_{\text{atto}} b_{\text{attn}} b_{\text{atto}} c_{\text{atto}} c_{\text{a$$

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

$$\begin{aligned} \mathbf{c}_{\text{attn3}} &= \mathbf{sum} \left(\left[\alpha_1(\mathbf{a}_{\text{input}} W_3^V), \alpha_2(\mathbf{b}_{\text{input}} W_3^V) \right] \right) \\ \alpha &= \mathbf{softmax}(\tilde{\alpha}) \\ \tilde{\alpha} &= \left[\frac{(\mathbf{c}_{\text{input}} W_3^Q)^{\top}(\mathbf{a}_{\text{input}} W_3^X)}{\sqrt{d_k}}, \frac{(\mathbf{c}_{\text{input}} W_3^Q)^{\top}(\mathbf{b}_{\text{input}} W_3^K)}{\sqrt{d_k}} \right] \\ &= \left[\frac{\mathbf{a}_{\text{attn1}} \mathbf{a}_{\text{attn2}} \mathbf{a}_{\text{attn3}} \mathbf{b}_{\text{attn3}} \mathbf{b}_{\text{attn2}} \mathbf{c}_{\text{attn2}} \mathbf{c}_{\text{attn3}} \mathbf{c}_{\text{attn3}$$

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Figure 1: The Transformer - model architecture.

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Figure 1: The Transformer - model architecture.

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Figure 1: The Transformer - model architecture.

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	000●	000000	00000

The right side is repeated for every decoder state, with outputs for each state that has them (all of them for dialogue and machine translation, only the final one for NLI).

Figure 1: The Transformer - model architecture.

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	000●	000000	00000

Figure 1: The Transformer - model architecture.

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000
BERT				

- 1. Overview: Resources and guiding insights
- 2. ELMo: Embeddings from Language Models
- 3. Transformers
- 4. BERT: Bidirectional Encoder Representations from Transformers
- contextualreps.ipynb: Easy ways to bring ELMo and BERT into your project

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	00000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	00000	00000

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	00000	00000

Masked Language Modeling (MLM)

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	00000	00000

Transfer learning and fine-tuning

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Binary sentence prediction pretraining

Positive: Actual sentence sequences

- [CLS] the man went to [MASK] store [SEP]
- he bought a gallon [MASK] milk [SEP]
- Label: IsNext

Negative: Randomly chosen second sentence

- [CLS] the man went to [MASK] store [SEP]
- penguin [MASK] are flight ##less birds [SEP]
- Label: NotNext

```
Overview
                     ELMo
                                      Transformers
                                                             BERT
                                                              000000
Tokenization and the BERT embedding space
        In [1]: import random
                # In the code from https://aithub.com/google-research/bert
               from tokenization import FullTokenizer
        In [2]: vocab_filename = "uncased_L-12_H-768_A-12/vocab.txt"
        In [3]: with open(vocab_filename) as f:
                   vocab = f.read().splitlines()
        In [4]: len(vocab)
        Out[4]: 30522
        In [5]: random.sample(vocab, 5)
        Out[5]: ['folder', '##gged', 'principles', 'moving', '##ceae']
        In [6]: tokenizer = FullTokenizer(vocab_file=vocab_filename, do_lower_case=True)
        In [7]: tokenizer.tokenize("This isn't too surprising!")
        Out[7]: ['this', 'isn', "'", 't', 'too', 'surprising', '!']
        In [8]: tokenizer.tokenize("Does BERT know Snuffleupagus?")
        Out[8]: ['does', 'bert', 'know', 's', '##nu', '##ffle', '##up', '##ag', '##us', '?']
```

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	00000	00000

BERT model releases

Base

- Transformer layers: 12
- Hidden representations: 768 dimensions
- Attention heads: 12
- Total parameters: 110M

Large

- Transformer layers: 24
- Hidden representations: 1024 dimensions
- Attention heads: 16
- Total parameters: 340M

Limited to sequences of 512 tokens due to dimensionality of the positional embeddings.

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

contextualreps.ipynb

- 1. Overview: Resources and guiding insights
- 2. ELMo: Embeddings from Language Models
- 3. Transformers
- 4. BERT: Bidirectional Encoder Representations from Transformers
- contextualreps.ipynb: Easy ways to bring ELMo and BERT into your project

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	•••••
Guiding	idea			

- Your existing architecture can benefit from contextual representations.
- contextualreps.ipynb shows you how to bring in ELMo and BERT representations.
- You don't get the benefits of fine-tuning (for that, you need to integrate more fully with ELMo and BERT code), but you still get a reliable boost!

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	0000

Standard RNN dataset preparation

			Embedding			
Examples	[a, b, a]	1	-0.42	0.10	0.12	
Lyampies	[b, c]	2	-0.16	-0.21	0.29	
	\Downarrow	3	-0.26	0.31	0.37	
Indices	[1, 2, 1] [2, 3] ↓					
Vectors	[-0.42 0.10 0),12],[-0.16 -0.2	21 0.29], [–	-0.42 0.1	
Vectors	[-0.16-0.21	0.29]	,[—0.26 0.3	31 0.37]		

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	0000

RNN contextual representation inputs

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Code snippet: ELMo RNN inputs

```
In [1]: from allennlp.commands.elmo import ElmoEmbedder
        import os
        import sst
        from torch_rnn_classifier import TorchRNNClassifier
In [2]: SST_HOME = os.path.join("data", "trees")
In [3]: elmo = ElmoEmbedder()
In [4]: def elmo_phi(tree):
            vecs = elmo.embed sentence(tree.leaves())
            return vecs.mean(axis=0)
In [5]: def fit_rnn(X, y):
            mod = TorchRNNClassifier(vocab=[], max_iter=50, use_embedding=False)
            mod.fit(X, y)
            return mod
```

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Code snippet: ELMo RNN inputs

e f t a	<pre>experiment = ST_HOME, elmo_phi, eit_rnn, crain_reader= sssess_reader vectorize=Fal</pre>	sst.train =sst.dev_	_reader,		
Finished epoc	ch 50 of 50;	error is	0.073577156	329041195	
	precision	recall	f1-score	support	
negative			f1-score 0.693	support 428	
negative neutral	0.700	0.687		428	
neutral	0.700	0.687 0.284	0.693 0.315	428	
neutral	0.700 0.353 0.710	0.687 0.284	0.693 0.315 0.750	428 229 444	
neutral positive	0.700 0.353 0.710 0.647	0.687 0.284 0.795 0.647	0.693 0.315 0.750 0.647	428 229 444	

Overview EL	.Mo T	Transformers	BERT	contextualreps.ipynb
000000 00	00 (0000	000000	00000

Code snippet: BERT RNN inputs

```
In [1]: # bert-serving-start -model_dir data/bert/uncased_L-12_H-768_A-12/ \
    # -pooling_strategy NONE -max_seq_len NONE -show_tokens_to_client
    from bert_serving.client import BertClient
    import os
    import sst
    from torch_rnn_classifier import TorchRNNClassifier
In [2]: SST_HOME = os.path.join("data", "trees")
In [3]: # Load the train and dev sets as strings, to let BERT tokenize:
    sst_train = [(" ".join(t.leaves()), label) for t, label in sst.train_reader(SST_HOME)]
    sst_dev = [(" ".join(t.leaves()), label) for t, label in sst.dev_reader(SST_HOME)]
In [4]: X_str_train, y_train = zip(*sst_train)
    X_str_dev, y_dev = zip(*sst_dev)
In [5]: X_str_dev, y_dev = zip(*sst_dev)
```

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	0000●

Code snippet: BERT RNN inputs

```
In [6]: bc = BertClient(check_length=False)
In [7]: # Prefetch all the BERT representations:
    X_bert_train = bc.encode(list(X_str_train), show_tokens=False)
    X_bert_dev = bc.encode(list(X_str_dev), show_tokens=False)
In [8]: # Create a look-up for fast featurization:
    BERT_LOOKUP = {}
    for sents, reps in ((X_str_train, X_bert_train), (X_str_dev, X_bert_dev)):
        assert len(sents) == len(reps)
        for s, rep in zip(sents, reps):
            BERT_LOOKUP[s] = rep
```

Overview	ELMo	Transformers	BERT	contextualreps.ipynb
000000	000	0000	000000	00000

Code snippet: BERT RNN inputs

```
In [9]: def bert_phi(tree):
          s = " ".join(tree.leaves())
          return BERT LOOKUP[s]
In [10]: def fit rnn(X, v):
           mod = TorchRNNClassifier(vocab=[], max_iter=50, use_embedding=False)
           mod.fit(X, v)
           return mod
In [11]: bert rnn experiment = sst.experiment(
           SST_HOME,
           bert phi.
           fit_rnn,
           train_reader=sst.train_reader,
           assess_reader=sst.dev_reader,
           vectorize=False)
Finished epoch 50 of 50; error is 2.6541710644960403
            precision recall f1-score
                                         support
   negative
             0.767
                       0 668
                                 0 714
                                             428
    neutral
            0.322 0.323 0.322
                                             229
   positive
               0.737 0.827 0.779
                                             444
            0.660
                       0.660 0.660
  micro avg
                                            1101
  macro avg
            0.608 0.606 0.605
                                            1101
weighted avg
               0.662
                         0.660
                                 0.659
                                            1101
```

References I

Devlin, Jacob, Ming-Wei Chang, Kenton Lee & Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the north american association of computational linguistics, Stroudsburg, PA: Association for Computational Linguistics.

Peters, Matthew, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee & Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 conference of the north american chapter of the association for computational linguistics: Human language technologies, volume 1 (long papers), 2227–2237. Association for Computational Linguistics. http://aclweb.org/anthology/NI8-1202.

Smith, Noah A. 2019. Contextual word representations: A contextual introduction. ArXiv:1902.06006v2.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aldan N Gomez, Ł ukasz Kaiser & Illia
Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan & R. Garnett (eds.), Advances in neural information processing systems 30, 5998–6008. Curran Associates, Inc. http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.