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Associated materials

1. Notebook: contextualreps.ipynb
2. Smith 2019
3. CS224n lecture: slides and YouTube version
4. ELMo:

É Peters et al. 2018
É Project site: https://allennlp.org/elmo

5. Transformer
É Vaswani et al. 2017
É Alexander Rush: The Annotated Transformer [link]

6. BERT
É Devlin et al. 2019
É Project site: https://github.com/google-research/bert
É bert-as-service [link]
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http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture13-contextual-representations.pdf
https://youtu.be/S-CspeZ8FHc
https://allennlp.org/elmo
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://github.com/google-research/bert
https://github.com/hanxiao/bert-as-service
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Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.

g. The newscaster broke into the movie broadcast.
h. We broke even.

2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit

3. a. A crane caught a fish.
b. A crane picked up the steel beam.
c. I saw a crane.

4. a. Are there typos? I didn’t see any.
b. Are there bookstores downtown? I didn’t see any.

4 / 31



Overview ELMo Transformers BERT contextualreps.ipynb

Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.

g. The newscaster broke into the movie broadcast.
h. We broke even.

2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit

3. a. A crane caught a fish.
b. A crane picked up the steel beam.
c. I saw a crane.

4. a. Are there typos? I didn’t see any.
b. Are there bookstores downtown? I didn’t see any.

4 / 31



Overview ELMo Transformers BERT contextualreps.ipynb

Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.

g. The newscaster broke into the movie broadcast.
h. We broke even.

2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit

3. a. A crane caught a fish.
b. A crane picked up the steel beam.
c. I saw a crane.

4. a. Are there typos? I didn’t see any.
b. Are there bookstores downtown? I didn’t see any.

4 / 31



Overview ELMo Transformers BERT contextualreps.ipynb

Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.

g. The newscaster broke into the movie broadcast.
h. We broke even.

2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit

3. a. A crane caught a fish.
b. A crane picked up the steel beam.
c. I saw a crane.

4. a. Are there typos? I didn’t see any.
b. Are there bookstores downtown? I didn’t see any.

4 / 31



Overview ELMo Transformers BERT contextualreps.ipynb

Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.

g. The newscaster broke into the movie broadcast.
h. We broke even.

2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit

3. a. A crane caught a fish.
b. A crane picked up the steel beam.
c. I saw a crane.

4. a. Are there typos? I didn’t see any.
b. Are there bookstores downtown? I didn’t see any.

4 / 31



Overview ELMo Transformers BERT contextualreps.ipynb

Model structure and linguistic structure
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Guiding idea: Attention (from the NLI slides)

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11
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Guiding idea: Subword modeling

r u l e s

Filters of different length, 
obtained via dense layers 
processing the input 
character embeddings and 
combined via max-pooling:

4 2 6 1

1 7 8 2

1 3 9 3

4 7 9 3

Max-pooling layers concatenated to 
form the word representation.
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Guiding idea: Positional encoding
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1. Overview: Resources and guiding insights
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Core model structure
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Word embeddings
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Highway layer

Highway layer
Highway layers introduce gating 
information between layers:

(cW + b)(cWT + bT)  + c(1 – (cWT + bT))  
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initial representation
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ELMo model releases

LSTM
Model Parameters Hidden size Output size Highway layers

Small 13.6M 1024 128 1
Medium 28.0M 2048 256 1
Original 93.6M 4096 512 2
Original (5.5B) 93.6M 4096 512 2

Additional details at https://allennlp.org/elmo; the options files reveal
additional information about the subword convolutional filters, activation
functions, thresholds, and layer dimensions.
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2. ELMo: Embeddings from Language Models

3. Transformers

4. BERT: Bidirectional Encoder Representations from
Transformers

5. contextualreps.ipynb: Easy ways to bring ELMo and
BERT into your project
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Multi-headed attention
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Repeated transformer blocks

norm
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Repeated 6 times, with 
cout serving as cinput to 
each successive layer

Reminder that we also do 
multi-headed attention in 
each layer
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Masked Language Modeling (MLM)
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Transfer learning and fine-tuning
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Binary sentence prediction pretraining

Positive: Actual sentence sequences

• [CLS] the man went to [MASK] store [SEP]
• he bought a gallon [MASK] milk [SEP]
• Label: IsNext

Negative: Randomly chosen second sentence

• [CLS] the man went to [MASK] store [SEP]
• penguin [MASK] are flight ##less birds [SEP]
• Label: NotNext
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Tokenization and the BERT embedding space

code_bert_tokenization

May 12, 2019

In [1]: import random
# In the code from https://github.com/google-research/bert
from tokenization import FullTokenizer

In [2]: vocab_filename = "uncased_L-12_H-768_A-12/vocab.txt"

In [3]: with open(vocab_filename) as f:
vocab = f.read().splitlines()

In [4]: len(vocab)

Out[4]: 30522

In [5]: random.sample(vocab, 5)

Out[5]: ['folder', '##gged', 'principles', 'moving', '##ceae']

In [6]: tokenizer = FullTokenizer(vocab_file=vocab_filename, do_lower_case=True)

In [7]: tokenizer.tokenize("This isn't too surprising!")

Out[7]: ['this', 'isn', "'", 't', 'too', 'surprising', '!']

In [8]: tokenizer.tokenize("Does BERT know Snuffleupagus?")

Out[8]: ['does', 'bert', 'know', 's', '##nu', '##ffle', '##up', '##ag', '##us', '?']

1
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BERT model releases

Base
• Transformer layers: 12
• Hidden representations: 768 dimensions
• Attention heads: 12
• Total parameters: 110M

Large

• Transformer layers: 24
• Hidden representations: 1024 dimensions
• Attention heads: 16
• Total parameters: 340M

Limited to sequences of 512 tokens due to dimensionality of
the positional embeddings.
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contextualreps.ipynb

1. Overview: Resources and guiding insights

2. ELMo: Embeddings from Language Models

3. Transformers

4. BERT: Bidirectional Encoder Representations from
Transformers

5. contextualreps.ipynb: Easy ways to bring ELMo and
BERT into your project
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Guiding idea

• Your existing architecture can benefit from contextual
representations.

• contextualreps.ipynb shows you how to bring in ELMo
and BERT representations.

• You don’t get the benefits of fine-tuning (for that, you
need to integrate more fully with ELMo and BERT code),
but you still get a reliable boost!
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Standard RNN dataset preparation

Examples
[a, b, a]
[b, c]
⇓

Indices
[1, 2, 1]
[2, 3]
⇓

Vectors

h

[−0.42 0.10 0.12], [−0.16 −0.21 0.29], [−0.42 0.10 0.12]
i

h

[−0.16 −0.21 0.29], [−0.26 0.31 0.37]
i

Embedding

1 −0.42 0.10 0.12
2 −0.16 −0.21 0.29
3 −0.26 0.31 0.37
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RNN contextual representation inputs

Examples
[a, b, a]
[b, c]
⇓

Vectors

h

[−0.41 −0.08 0.27], [0.17 −0.22 0.78][−0.46 0.24 0.12]
i

h

[−0.02 −0.56 0.11][−0.45 0.43 0.32]
i
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Code snippet: ELMo RNN inputs

contextualreps-sst-elmo

May 12, 2019

In [1]: from allennlp.commands.elmo import ElmoEmbedder
import os
import sst
from torch_rnn_classifier import TorchRNNClassifier

In [2]: SST_HOME = os.path.join("data", "trees")

In [3]: elmo = ElmoEmbedder()

In [4]: def elmo_phi(tree):
vecs = elmo.embed_sentence(tree.leaves())
return vecs.mean(axis=0)

In [5]: def fit_rnn(X, y):
mod = TorchRNNClassifier(vocab=[], max_iter=50, use_embedding=False)
mod.fit(X, y)
return mod

In [6]: elmo_experiment = sst.experiment(
SST_HOME,
elmo_phi,
fit_rnn,
train_reader=sst.train_reader,
assess_reader=sst.dev_reader,
vectorize=False)

Finished epoch 50 of 50; error is 0.07357715629041195

precision recall f1-score support

negative 0.700 0.687 0.693 428
neutral 0.353 0.284 0.315 229

positive 0.710 0.795 0.750 444

micro avg 0.647 0.647 0.647 1101
macro avg 0.588 0.589 0.586 1101

weighted avg 0.632 0.647 0.638 1101

1
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In [1]: from allennlp.commands.elmo import ElmoEmbedder
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import sst
from torch_rnn_classifier import TorchRNNClassifier

In [2]: SST_HOME = os.path.join("data", "trees")

In [3]: elmo = ElmoEmbedder()

In [4]: def elmo_phi(tree):
vecs = elmo.embed_sentence(tree.leaves())
return vecs.mean(axis=0)

In [5]: def fit_rnn(X, y):
mod = TorchRNNClassifier(vocab=[], max_iter=50, use_embedding=False)
mod.fit(X, y)
return mod

In [6]: elmo_experiment = sst.experiment(
SST_HOME,
elmo_phi,
fit_rnn,
train_reader=sst.train_reader,
assess_reader=sst.dev_reader,
vectorize=False)

Finished epoch 50 of 50; error is 0.07357715629041195

precision recall f1-score support

negative 0.700 0.687 0.693 428
neutral 0.353 0.284 0.315 229

positive 0.710 0.795 0.750 444

micro avg 0.647 0.647 0.647 1101
macro avg 0.588 0.589 0.586 1101

weighted avg 0.632 0.647 0.638 1101
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Code snippet: BERT RNN inputs

contextualreps-sst-example

May 12, 2019

In [1]: # bert-serving-start -model_dir data/bert/uncased_L-12_H-768_A-12/ \
# -pooling_strategy NONE -max_seq_len NONE -show_tokens_to_client
from bert_serving.client import BertClient
import os
import sst
from torch_rnn_classifier import TorchRNNClassifier

In [2]: SST_HOME = os.path.join("data", "trees")

In [3]: # Load the train and dev sets as strings, to let BERT tokenize:
sst_train = [(" ".join(t.leaves()), label) for t, label in sst.train_reader(SST_HOME)]
sst_dev = [(" ".join(t.leaves()), label) for t, label in sst.dev_reader(SST_HOME)]

In [4]: X_str_train, y_train = zip(*sst_train)
X_str_dev, y_dev = zip(*sst_dev)

In [5]: X_str_dev, y_dev = zip(*sst_dev)

In [6]: bc = BertClient(check_length=False)

In [7]: # Prefetch all the BERT representations:
X_bert_train = bc.encode(list(X_str_train), show_tokens=False)
X_bert_dev = bc.encode(list(X_str_dev), show_tokens=False)

In [8]: # Create a look-up for fast featurization:
BERT_LOOKUP = {}
for sents, reps in ((X_str_train, X_bert_train), (X_str_dev, X_bert_dev)):

assert len(sents) == len(reps)
for s, rep in zip(sents, reps):

BERT_LOOKUP[s] = rep

In [9]: def bert_phi(tree):
s = " ".join(tree.leaves())
return BERT_LOOKUP[s]

In [10]: def fit_rnn(X, y):
mod = TorchRNNClassifier(vocab=[], max_iter=50, use_embedding=False)
mod.fit(X, y)
return mod

1
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Code snippet: BERT RNN inputs

contextualreps-sst-example

May 12, 2019

In [1]: # bert-serving-start -model_dir data/bert/uncased_L-12_H-768_A-12/ \
# -pooling_strategy NONE -max_seq_len NONE -show_tokens_to_client
from bert_serving.client import BertClient
import os
import sst
from torch_rnn_classifier import TorchRNNClassifier

In [2]: SST_HOME = os.path.join("data", "trees")

In [3]: # Load the train and dev sets as strings, to let BERT tokenize:
sst_train = [(" ".join(t.leaves()), label) for t, label in sst.train_reader(SST_HOME)]
sst_dev = [(" ".join(t.leaves()), label) for t, label in sst.dev_reader(SST_HOME)]

In [4]: X_str_train, y_train = zip(*sst_train)
X_str_dev, y_dev = zip(*sst_dev)

In [5]: X_str_dev, y_dev = zip(*sst_dev)

In [6]: bc = BertClient(check_length=False)

In [7]: # Prefetch all the BERT representations:
X_bert_train = bc.encode(list(X_str_train), show_tokens=False)
X_bert_dev = bc.encode(list(X_str_dev), show_tokens=False)

In [8]: # Create a look-up for fast featurization:
BERT_LOOKUP = {}
for sents, reps in ((X_str_train, X_bert_train), (X_str_dev, X_bert_dev)):

assert len(sents) == len(reps)
for s, rep in zip(sents, reps):

BERT_LOOKUP[s] = rep

In [9]: def bert_phi(tree):
s = " ".join(tree.leaves())
return BERT_LOOKUP[s]

In [10]: def fit_rnn(X, y):
mod = TorchRNNClassifier(vocab=[], max_iter=50, use_embedding=False)
mod.fit(X, y)
return mod

1
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Code snippet: BERT RNN inputs
In [ ]:

In [ ]:

In [9]: def bert_phi(tree):
s = " ".join(tree.leaves())
return BERT_LOOKUP[s]

In [10]: def fit_rnn(X, y):
mod = TorchRNNClassifier(vocab=[], max_iter=50, use_embedding=False)
mod.fit(X, y)
return mod

In [11]: bert_rnn_experiment = sst.experiment(
SST_HOME,
bert_phi,
fit_rnn,
train_reader=sst.train_reader,
assess_reader=sst.dev_reader,
vectorize=False)

Finished epoch 50 of 50; error is 2.6541710644960403

precision recall f1-score support

negative 0.767 0.668 0.714 428
neutral 0.322 0.323 0.322 229

positive 0.737 0.827 0.779 444

micro avg 0.660 0.660 0.660 1101
macro avg 0.608 0.606 0.605 1101

weighted avg 0.662 0.660 0.659 1101

2
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