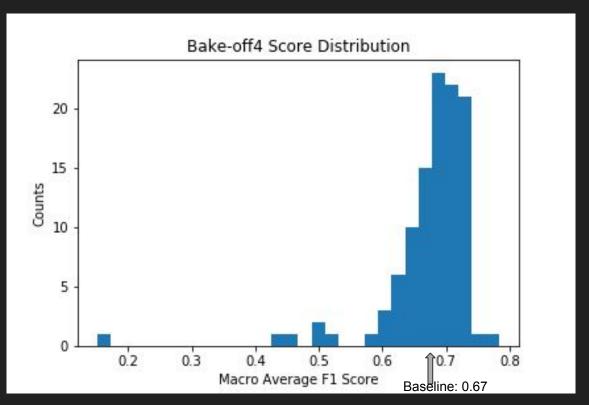
Bake Off 4 Report

Atticus Geiger and Min Kim

Task

- Word-level natural language inference with binary classification
 - Predicting word entailment given two words
 - Our word disjoint train test split reflects an expectation for our models to generalize to unseen words
- Evaluation Dataset: 1767 negative labels & 446 positive labels
- Evaluation Metric: Macro F1 Score
 - Some people reported micro F1 or weighted F1 (these scores tend to be higher than macro F1)
 - Macro F1 is a desirable metric due to data imbalance

Histogram of scores



Top Models

- GloVe embeddings were used
- The function torch.tensor was used, evidencing the creation of deeper, more complex neural network models
- This has nothing to do with design, but interestingly top performing models tended to have the variable name custom experiment

GLOVE 2.803177 0.414048 custom experiment 2.718232 0.441652 torch.tensor 2.621152 0.473198 2.609503 0.476984 2.509137 0.509598 2.378453 0.552065 0.73 2.367492 0.555626 0.557876 random 2.360570 f 2.310497 0.574147 2.275729 0.585445 loss 2.269467 0.587480 2.235965 0.598367 get 2.224008 0.602252 2.224008 0.602252 0.57 2.208564 0.607271 2.208564 0.607271 BatchNorm 2.195495 0.611518

top

bottom

Bottom Models

- Seems like a lot of these tokens are hand selected hyperparameters, perhaps no search was done
- Though this has nothing to do with design, interestingly bottom performing models tended to have the variable name word_disjoint_experiment

	top	bottom
0.80	0.194159	1.261862
;	0.236960	1.247954
0.79	0.346190	1.212459
0.65	0.399740	1.195058
0.68	0.423121	1.187460
=d	0.474110	1.170891
0.77	0.479688	1.169078
nlu	0.497238	1.163375
0.47	0.497238	1.163375
print	0.509669	1.159336
200	0.529526	1.152883
0.86	0.533192	1.151692
0.78	0.559636	1.143099
0	0.618932	1.123830
0.69	0.631018	1.119903
0.92	0.643792	1.115752
0.44	0.679558	1.104129
sklearn	0.702991	1.096515
0.87	0.715705	1.092383
word_disjoint_experiment	0.723400	1.089882

1st Place: Group 26 (Di, Yipeng, Zijian)

- Score: 0.7852
- BERT Sequence Classification Model
 - Train the model using pretrained BERT in PyTorch
- Oversampling (preprocessing)
 - Random Oversampler
 - randomly sampling with replacement the current available samples

2nd Place: Group 9 (Adam, Kais, Alex)

- Score: 0.7541
- Facebook's InferSent Model
 - Pre-training on SNLI(Stanford NLI corpus) dataset
 - Transfer learning & Extra layer for binary classification
- Weighted Loss:
 - weights = [1, 5.3]
 - Giving 5 times more emphasis to class 1 than class 0 when calculating loss

Qualitative Analysis of Models with Poor Performance

- The 10 models with the worst performance shared some features that allow us to learn what doesn't work
- Element wise multiplication is not a good function to combine vectors
- Shallow networks, linear regression, and SVMs do not work well as neural classifiers
- The success of deep learning models on this task makes sense, as there is no obvious way to create clever hand crafted feature representations