

Data augmentation for NLP

Min/Jayadev

29 May, 2019

What is Data Augmentation?

- Technique to increase the amount of relevant data
- More data usually means better accuracy
- Very useful when you have small training datasets
- Data Augmentation is popular in computer vision
 - Images are shifted, zoomed in/out, rotated, flipped, distorted, or shaded with a hue [1]
- What about natural language data?

Training data vs. accuracy

Sentiment Classification of IMDB movie reviews (Logistic Regression)

Model performance gets better with increase in training data

Number of Training Examples	Model Test Accuracy
1000	0.79432
2000	0.82632
25000 (All)	0.86592

- Small num. of training examples => poor performance (generally)
- Data augmentation can help boost performance!

How do we augment natural language training data?

We will discuss 2 approaches today:

- Easy Data Augmentation
 - Use simple heuristics to augment training data
- Back translation
 - Use noise introduced by NMT to augment training data

Baseline: IMDB 1000 examples trained Model

(Acc: **0.79432**)

Let's augment the data using the above approaches

Final projects

The final project is the main assignment of the course. Projects are required to be related in a substantive way to at least one of the central topics of the course. Final projects can be done in groups of 1–3 people; in our experience, groups of 3 lead to the best outcomes, so we encourage you to form a team of that size.

Each project team will be assigned a mentor (a member of the teaching team), who will provide feedback on all their project-related work and generally be available as a resource.

The final project is the main assignment of the course.

We will use this sentence to explore data augmentation methods!

Easy Data Augmentation [Wei and Zou, 2019]

https://arxiv.org/abs/1901.11196

4 simple techniques for data augmentation in NLP

- Synonym Replacement (SR):
 - Randomly choose n words from the sentence that aren't stop words, replace with synonyms
- Random Insertion (RI):
 - Find a random synonym of a word that is not a stop word, and insert this randomly n times
- Random Swap (RS):
 - Swap two random words in the sentence, do this *n* times
- Random Deletion (RD):
 - Randomly remove each word in the sentence with probability p

Examples (*n* = 1)

- Original sentence: The final project is the main assignment of the course.
- SR: The final project is the **principal** assignment of the course.
- RI: The final project is the main assignment of last the course. (last~final)
- RS: The final project is the assignment main of the course.
- RD: The final is the main assignment of the course. (project deleted)

Do all these sentences preserve meaning? Not necessarily the case!

Do sentences retain "meaning" after EDA?

Figure 2: Latent space visualization of original and augmented sentences in the Pro-Con dataset.

RNN representations of modified sentences are very similar those of original ones.

[Wei and Zou, 2019] (https://arxiv.org/pdf/1901.11196.pdf)

EDA Experiment Results

EDA (https://github.com/jasonwei20/eda_nlp) performs:

- Synonym Replacement
- Random Insertion
- Random Deletion
- Random Swap

Model Training Data	Accuracy
1000 training examples	0.79432
1000 training examples + 10000 EDA augmented examples	0.80348

• ~ 1.2% accuracy improvement on IMDB movie review sentiment classification

Back translation (Sennrich et al., 2016)

- Using Neural Machine Translation to augment training data
 - Original Language -> Intermediate Language-> Original Language
 - Introduce noise through translation to get similar sentences

Example 1: English -> German -> English

Example 2: English -> Korean -> English

Back Translation Experiment Results

Model Training Data	Accuracy
1000 training examples	0.79432
1000 training examples + 1000 back-translated examples	0.80856

- ~ 1.8% accuracy improvement on IMDB movie review sentiment classification
- Used Google Translate API to translate from English -> German -> English

Back Translation + EDA

When trained on 12000 training examples:

- 1000 original training examples
- 1000 augmented from back translation
- **10000** augmented from EDA

Accuracy: **0.81092**

~ 2% accuracy increase