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Plan and goals
1 Language in context, language as action

2 The Switchboard Dialog-Act Corpus: modeling interactional
linguistic patterns

3 The Cards Corpus: task-oriented dialogue

4 PLOW: dialogue agents for the Web browser

5 A framework for increasingly sophisticated dialogue agents:
a. Markov Decision Processs (MDP)
b. Partially Observable MDP (POMDP)
c. Decentralized POMDP (Dec-POMDP)
d. Approximations of b and c

Deeply influenced by Adam Vogel, who successfully
defended his Stanford PhD thesis this morning!
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Language is action

Winograd (1986:170):
“all language use can be thought of as a way of activating procedures
within the hearer. We can think of an utterance as a program – one that
indirectly causes a set of operations to be carried out within the hearer’s
cognitive system.”
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Eliza (Weizenbaum 1966)

1 User: You are like my father in some ways.

2 ELIZA: What resemblance do you see

3 User: You are not very aggressive but I think you don’t want me to
notice that.

4 ELIZA: What makes you think I am not aggressive?

5 User: You don’t argue with me.

6 ELIZA: Why do you think I don’t argue with you?

7 User: You are afraid of me.

8 ELIZA: Does it please you to believe I am afraid of you?

Rewrite user’s reply by (i) swapping 1st and 3rd person, (ii) interpolating
stock phrases, and (iii) using scores to rank possible transformations.
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SHRDLU (Winograd 1972)

Full-grounded system that parses the user’s input, maps it to logical form,
interprets that logical form in its world, tries to take appropriate action,
and generates responses.

http://hci.stanford.edu/winograd/shrdlu/

One project did succeed. Terry
Winograd’s program SHRDLU could
use English intelligently, but there
was a catch: the only subject you
could discuss was a micro-world of
simulated blocks.
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SHRDLU (Winograd 1972)

1 Person: WHAT DOES THE BOX CONTAIN?

2 Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

3 Person: WHAT IS THE PYRAMID SUPPORTED BY?

4 Computer: THE BOX.

5 Person: HOW MANY BLOCKS ARE NOT IN THE BOX?

6 Computer: FOUR OF THEM.

7 Person: IS AT LEAST ONE OF THEM NARROWER THAN THE
ONE WHICH I TOLD YOU TO PICK UP?

8 Computer: YES, THE RED CUBE.

9 Person: IS IT SUPPORTED?

10 Computer: YES, BY THE TABLE.
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HAL

• In the 1967 Stanley Kubrick movie 2001: A Space Odyssey, the
spaceship’s computer HAL can

• display graphics;
• play chess; and
• conduct natural, open-domain conversations with humans.

• How well did the filmmakers do at predicting what computers would
be capable in 2001?

(Slide idea from Andrew McCallum)
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HAL
Graphics

HAL

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Graphics

HAL Now
Jurassic Park (1993)

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner
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HAL Now

(Slide idea from Andrew McCallum)
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HAL
Chess

HAL

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Chess

HAL NowDeep Blue (1997)

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Chess

HAL Now

(Slide idea from Andrew McCallum)
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HAL
Dialogue

HAL

David Bowman: Open the
pod bay doors, HAL.

HAL: I’m sorry, Dave, I’m
afraid I can’t do that.

David: What are you talking
about, HAL?

HAL: I know that you and
Frank were planning to
disconnect me, and I’m
afraid that’s something I
cannot allow to happen.

2014

. . .

(Slide idea from Andrew McCallum)
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Siri

You: Any good burger joints around here?

Siri: I found a number of burger restaurants
near you.

You: Hmm. How about tacos?

Apple: [Siri remembers that you asked about
restaurants. so it will look for Mexican
restaurants in the neighborhood. And Siri
is proactive, so it will question you until it
finds what you’re looking for.]

(Slide from Marie de Marneffe)

7 / 69



Overview & motivations SwDA PLOW MDPs & grounded semantics The Cards Corpus POMDPs & approximate Dec-POMDPs Refs.

Siri

Colbert: For the love of God, the cameras are on,
give me something?

Siri: What kind of place are you looking for?
Camera stores or churches?

[. . . ]

Colbert: I don’t want to search for anything! I want
to write the show!

Siri: Searching the Web for “search for
anything. I want to write the shuffle.”

(Slide from Marie de Marneffe)
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Language in context
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Discourse models

Discourse is structured by an evolving set of abstract, implicit, issues
about which the participants have only partial knowledge:

Questions under Discussion (QUDs)
McCarthy 1980; Groenendijk and Stokhof 1984; Rooth 1985; Lewis
1988; Ginzburg 1996a; Roberts 1996; Büring 1999

Decision problems (games)
Lewis 1969; Clark 1996; Merin 1997; Blutner 1998; Parikh 2001; Beaver
2002; van Rooy 2003; Benz et al. 2005; Franke 2009

Goal-orientation
Perrault and Allen 1980; Allen 1991; Hobbs et al. 1993; Graff 2000; Allen
et al. 2007; Stone et al. 2007

For much more: http://www.ling.ohio-state.edu/˜croberts/QUDbib/
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Pragmatically required over-answering
Context: Homer calls a hotel.

Homer: Is Lisa Simpson in Room 10?
Clerk A: She’s in room 20.
Clerk B: #No.

Which room is Lisa in?

Is Lisa in 10? Is Lisa in 20? Is Lisa in 30?

(Roberts 1996; Ginzburg 1996a; Champollion 2008)
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Domain restriction

• Are there typos in my slides?
• Are there bookstores downtown?
• Are there cookies in the cupboard?
• . . .

I didn’t see any.

(Roberts 1996; Ginzburg 1996a; Malamud 2006)
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Granularity

Where are you from?

• Connecticut. (Issue: birthplaces)
• The U.S. (Issue: nationalities)
• Stanford. (Issue: affiliations)
• Planet earth. (Issue: intergalactic meetings)

(Groenendijk and Stokhof 1984; Ginzburg 1996b)
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Summary of corpus resources
• SwDA:
http://www.stanford.edu/˜jurafsky/ws97/

• SwDA with Treebank3 alignment:
http://compprag.christopherpotts.net/swda.html

• Edinburgh Map Corpus:
http://groups.inf.ed.ac.uk/maptask/

• TRIPS:
http://www.cs.rochester.edu/research/cisd/projects/trips/

• TRAINS:
http://www.cs.rochester.edu/research/cisd/projects/trains/

• Cards:
http://CardsCorpus.christopherpotts.net/

• SCARE:
http://slate.cse.ohio-state.edu/quake-corpora/scare/

• The Carnegie Mellon Communicator Corpus (human–computer):
http://www.speech.cs.cmu.edu/Communicator/
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A decision-theoretic framework for dialogue agents

Figure: MDP
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Figure 3: The decision diagram for the ListenerBot POMDP, the full Dec-POMDP, and the DialogBot ap-
proximation POMDP. The ListenerBot (a) only considers his own location p and the card location c. In the
full Dec-POMDP (b), both agents receive individual observations and choose actions independently. Opti-
mal decision making requires tracking all possible histories of beliefs of the other agent. In diagram (c), Di-
alogBot approximates the full Dec-POMDP as single-agent POMDP. At each time step, DialogBot marginal-
izes out the possible observations ō that ListenerBot received, yielding an expected belief state b̄.

Initial Belief State The initial belief state, b0 2
D(S), is a distribution over the state space S. Lis-
tenerBot begins each game with a known initial lo-
cation p0 but a uniform distribution over the location
of the card c:

b0(p,c) =

(
1

Nregions
p = p0

0 otherwise

Belief Update and Decision Making The key de-
cision making problem in POMDPs is the construc-
tion of a policy p : D(S)! A, a function from beliefs
to actions which dictates how the agent acts. Deci-
sion making in POMDPs proceeds as follows. The
world starts in a hidden state s0 ⇠ b0. The agent
executes action a0 = p(b0). The underlying hid-
den world state transitions to s1 ⇠ T (s0|a0,s0), the
world generates observation o0 ⇠ W(o|s1,a0), and
the agent receives reward R(s0,a0). Using the obser-
vation o0, the agent constructs a new belief b1 2D(S)
using Bayes’ rule:

bat ,ot
t+1 (s0) = Pr(s0|at ,ot ,bt)

=
Pr(ot |at ,s0,bt)Pr(s0|at ,bt)

Pr(ot |bt ,at)

=
W(ot |s0,at)Âs2S T (s0|at ,s)bt(s)

Âs00 W(ot |s00,at)Âs2S T (s00|at ,s)bt(s)
This process is referred to as belief update and is
analogous to the forward algorithm in HMMs. To in-
corporate communication into the standard POMDP

model, we consider observations (o,s) 2 O ⇥ S
which are a combination of a perceptual observation
o and a received message s . The semantics of the
message s is included in the belief update equation
using Pr(s|s), derived in Equation 1:

ba,o,s (s0) =

W(o|s0,a) Pr(s0|s)Pr(s)
Âs 02S Pr(s0|s 0)Pr(s 0) Âs2S T (s0|a,s)b(s)

Âs002S W(o|s00,a) Pr(s00|s)Pr(s)
Âs 02S Pr(s00|s 0)Pr(s 0) Âs2S T (s00|a,s)b(s)

Using this new belief state b1, the agent selects an
action a1 = p(b1), and the process continues. An
initial belief state b0 and a policy p together define
a Markov chain over pairs of states and actions.

For a given policy p , we define a value function
V p : D(S) ! R which represents the expected dis-
counted reward with respect to that Markov chain:

V p(b0) =
•

Â
t=0

g t E[R(bt ,at)|b0,p]

The goal of the agent is find a policy p⇤ which max-
imizes the value of the initial belief state:

p⇤ = argmax
p

V p(b0)

Exact computation of p⇤ is PSPACE-complete (Pa-
padimitriou and Tsitsiklis, 1987), making approx-
imation algorithms necessary for all but the sim-
plest problems. We use Perseus (Spaan and Vlassis,
2005), an anytime approximate point-based value it-
eration algorithm.
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b0(p,c) =

(
1

Nregions
p = p0

0 otherwise

Belief Update and Decision Making The key de-
cision making problem in POMDPs is the construc-
tion of a policy p : D(S)! A, a function from beliefs
to actions which dictates how the agent acts. Deci-
sion making in POMDPs proceeds as follows. The
world starts in a hidden state s0 ⇠ b0. The agent
executes action a0 = p(b0). The underlying hid-
den world state transitions to s1 ⇠ T (s0|a0,s0), the
world generates observation o0 ⇠ W(o|s1,a0), and
the agent receives reward R(s0,a0). Using the obser-
vation o0, the agent constructs a new belief b1 2D(S)
using Bayes’ rule:
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=
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This process is referred to as belief update and is
analogous to the forward algorithm in HMMs. To in-
corporate communication into the standard POMDP

model, we consider observations (o,s) 2 O ⇥ S
which are a combination of a perceptual observation
o and a received message s . The semantics of the
message s is included in the belief update equation
using Pr(s|s), derived in Equation 1:

ba,o,s (s0) =
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Using this new belief state b1, the agent selects an
action a1 = p(b1), and the process continues. An
initial belief state b0 and a policy p together define
a Markov chain over pairs of states and actions.

For a given policy p , we define a value function
V p : D(S) ! R which represents the expected dis-
counted reward with respect to that Markov chain:

V p(b0) =
•

Â
t=0

g t E[R(bt ,at)|b0,p]

The goal of the agent is find a policy p⇤ which max-
imizes the value of the initial belief state:

p⇤ = argmax
p

V p(b0)

Exact computation of p⇤ is PSPACE-complete (Pa-
padimitriou and Tsitsiklis, 1987), making approx-
imation algorithms necessary for all but the sim-
plest problems. We use Perseus (Spaan and Vlassis,
2005), an anytime approximate point-based value it-
eration algorithm.

Figure: Dec-POMDP
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The Switchboard Dialog-Act Corpus
• The SwDA extends the Switchboard-1 Telephone Speech Corpus,

Release 2, with turn/utterance-level dialog-act tags.
• The tags summarize syntactic, semantic, and pragmatic information

about the associated turn.
• It is freely available:

http://www.stanford.edu/˜jurafsky/ws97/

• The SwDA is not inherently linked to the Penn Treebank 3 parses of
Switchboard, and it is far from straightforward to align the two
resources (Calhoun et al. 2010).

• In addition, the SwDA is not distributed with the Switchboard’s tables
of metadata about the conversations and their participants.

• I created a CSV version of the corpus that pools all of this
information to the best of my ability, thereby allowing study of the
correlations among dialog tags, conversational metadata, and full
syntactic structures:

http://compprag.christopherpotts.net/swda.html
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Example dialogue
ˆh A.1 utt1: {F Uh, } let’s see. /

% A.1 utt2: How [ about, + {F uh, } let’s see, about ] ten years ago, /

qo A.1 utt3: {F uh, } what do you think was different ten years ago from now? /

sv B.2 utt1: {D Well, } I would say as, far as social changes go, {F uh, } I think families were more together. /

sv B.2 utt2: [ They, + they ] did more things together. /

b @A.3 utt1: Uh-huh <>. /

sv B.4 utt1: {F Uh, } they ate dinner at the table together. /

sv B.4 utt2: {F Uh, } the parents usually took out [ time, + {F uh, } {D you know, } more time ] than they do now to come with the children and just spend the day doing a family activity. /

b A.5 utt1: Uh-huh. /

sv B.6 utt1: {F Uh, } although I’m not a mother, [ I, + I ] still think that, {F uh, } a lot has changed since ten years ago. /

qo B.6 utt2: {F Uh, } what # do you # --

% A.7 utt1: # We, # -/

+ B.8 utt1: -- think about that? /

.

.

.

Table: FILENAME: 4360 1599 1589
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DAMSL tags
There are over 200 tags in the SwDA, most used only a few times. It is
more common to work with a collapsed version involving just 44 tags.

train full
name act tag example count count

1 Statement-non-opinion sd Me, I’m in the legal department. 72824 75145
2 Acknowledge (Backchannel) b Uh-huh. 37096 38298
3 Statement-opinion sv I think it’s great 25197 26428
4 Agree/Accept aa That’s exactly it. 10820 11133
5 Abandoned or Turn-Exit % So, - 10569 15550
6 Appreciation ba I can imagine. 4633 4765
7 Yes-No-Question qy Do you have to have any special training? 4624 4727
8 Non-verbal x [Laughter], [Throat clearing] 3548 3630
9 Yes answers ny Yes. 2934 3034

10 Conventional-closing fc Well, it’s been nice talking to you. 2486 2582
11 Uninterpretable % But, uh, yeah 2158 15550
12 Wh-Question qw Well, how old are you? 1911 1979
13 No answers nn No. 1340 1377
14 Response Acknowledgement bk Oh, okay. 1277 1306
15 Hedge h I don’t know if I’m making any sense or not. 1182 1226
16 Declarative Yes-No-Question qyˆd So you can afford to get a house? 1174 1219
17 Other fo o fw by bc Well give me a break, you know. 1074 883
18 Backchannel in question form bh Is that right? 1019 1053
19 Quotation ˆq You can’t be pregnant and have cats 934 983
20 Summarize/reformulate bf Oh, you mean you switched schools for the kids. 919 952
21 Affirmative non-yes answers na It is. 836 847
22 Action-directive ad Why don’t you go first 719 746
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DAMSL tags
There are over 200 tags in the SwDA, most used only a few times. It is
more common to work with a collapsed version involving just 44 tags.

train full
name act tag example count count

23 Collaborative Completion ˆ2 Who aren’t contributing. 699 723
24 Repeat-phrase bˆm Oh, fajitas 660 688
25 Open-Question qo How about you? 632 656
26 Rhetorical-Questions qh Who would steal a newspaper? 557 575
27 Hold before answer/agreement ˆh I’m drawing a blank. 540 556
28 Reject ar Well, no 338 346
29 Negative non-no answers ng Uh, not a whole lot. 292 302
30 Signal-non-understanding br Excuse me? 288 298
31 Other answers no I don’t know 279 286
32 Conventional-opening fp How are you? 220 225
33 Or-Clause qrr or is it more of a company? 207 209
34 Dispreferred answers arp nd Well, not so much that. 205 207
35 3rd-party-talk t3 My goodness, Diane, get down from there. 115 117
36 Offers, Options, Commits oo co cc I’ll have to check that out 109 110
37 Self-talk t1 What’s the word I’m looking for 102 103
38 Downplayer bd That’s all right. 100 103
39 Maybe/Accept-part aap am Something like that 98 105
40 Tag-Question ˆg Right? 93 92
41 Declarative Wh-Question qwˆd You are what kind of buff? 80 80
42 Apology fa I’m sorry. 76 79
43 Thanking ft Hey thanks a lot 67 78
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Switchboard Dialog Act Corpus with parsetrees

• My release of the SwDA includes the Treebank3 POS tags.

• It also includes the Treebank3 trees, but these are somewhat more
challenging to work with:

• Only 118,218 (53%) of utterances have trees.
• The Treebank3 team merged some utterances into single trees.
• Other utterances were split across trees.
• The turn numbering was altered, often dramatically.

• On the bright side:
• 82% of the utterances with trees correspond to a single tree.
• With the exception of non-verbal (x) and tag-questions (ˆg), the

distribution of tags in this subset is basically the same as the
distribution for the whole corpus.

• Additional details: http://compprag.christopherpotts.net/swda.html
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Act-tag and syntactic category alignment
A quick experiment: to what extent are dialog act tags and clause-types
aligned?

1 Request act
a. Take these pills twice a

day.
b. You should take these

twice a day.
c. Could you please take

these twice a day?

2 Question act
a. Is today Tuesday?
b. It’s Tuesday, right?
c. I need to confirm that it’s

Tuesday.

3 Imperative form
a. Take these pills twice a

day.
b. Have a seat.
c. Get well soon.

4 Interrogative
a. Is today Tuesday?
b. Is he ever tall!
c. Can you pass the salt?
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Act-tag and syntactic category alignment
A quick experiment: to what extent are dialog act tags and clause-types
aligned?

The hearer’s perspective: given that I heard a syntactic structure with
root label L , what are the speaker’s possible intended dialog acts?
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Act-tag and syntactic category alignment
A quick experiment: to what extent are dialog act tags and clause-types
aligned?

The speaker’s perspective: given that I want to convey dialog act D, what
is the best structure for me to choose?
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Modeling act sequences

• Modeling act sequences could be an important step towards realistic
interpretation and production.

• Shriberg et al. (1998) and Stolcke et al. (2000) use acoustic features
to predict general dialog act labels, using the SwDA. Their model is
a decision-tree classifier.

• Other classifiers might also be appropriate; the natural assumption
here is that the classifications decisions are made on a by-utterance
basis, with no inspection of neighboring utterances (Bangalore et al.
2006; Kumar Rangarajan Sridhar et al. 2009).

• Dialog act prediction can also be viewed as a sequence modeling
problem akin to POS tagging, and thus Hidden Markov Models and
Conditional Random Fields models are often used. Such models
incorporate earlier and/or later tags to make classification decisions.
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On the SwDA for dialogue research

Advantages
• Richly annotated.
• Includes speech data.
• Includes sociolinguistic metadata.
• Long conversations, and lots of them.
• Participants did not typically know each other before the

conversation, so most of their common ground is general knowledge.

Disadvantages
• Open-domain, unfocussed (participants do not stick to their topics).
• Virtually no hope of modeling the context or grounding the language

in the world or in action.
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PLOW: webpage structure as context

For the PLOW system, the context is the webpage:

match is found, it resorts to using just structural properties 
of the DOM tree. 

PLOW uses the best match to synthesize a retrieval rule 
for future use in finding the text field. It attempts to pro-
duce a rule that generalizes away from the specific onto-
logical concept *FULLNAME and could apply to any con-
cept (a natural language gloss of the rule is shown on the 
right hand side of Figure 4).  

After learning this rule based on a single example, 
PLOW can not only perform the action “find the author 
field” on this site, but actually can find other text fields on 
the site (for example, the book title field). In an evaluation 
of this technique, we determined that after learning how to 
find the “books” tab, it successfully found other tabs 95% 
of the time on Barnes & Noble’s website, and 98% on 
Amazon (for details and other examples, see Chambers et 
al, 2006). 

Learning Effective Parameterization 

One of the main challenges to learning even simple 
straight-line procedures is identifying the appropriate pa-
rameterization. When an object is used in a demonstration, 
the system has to be able to determine whether it is simply 
being used as an example and as an input parameter, 
whether it should be a constant in the procedure, or 
whether is has some relational dependency to other pa-
rameters already in the procedure. In addition, PLOW must 
determine which parameters are needed as the output pa-
rameters of the procedure.  

With traditional techniques for learning from observa-
tion, it is impossible to identify such information reliably 
from one example. With additional information from lan-
guage, however, we can generalize from one example quite 
effectively. Figure 5 shows excerpts from an actual dia-
logue for finding hotels near an address and the key fea-
tures PLOW used to derive its interpretation. First, much 
information can be obtained from language through the 
definiteness feature. An indefinite noun phrase such as “an 
address” is very likely to be an input parameter, and a defi-
nite noun phrase is not. In general, definite noun phrases 
are resolved using TRIPS’ reference resolution capability, 

capability, connecting the same instances of the parameters 
as they are used in the task. In the case of “the zip code”,
the reference resolution component handles the bridging 
reference using ontological information to interpret this as 
the zip code of the previously mentioned address.  

Learning Hierarchical Structure 

For the challenge of identifying the appropriate task hierar-
chy, the PLOW system uses a simple strategy for identify-
ing the beginning of new subprocedures: Any statement 
that explicitly identifies a goal, e.g., “Now let me show you 
how to …” or “Now we need to find the zip code”, is 
treated as the beginning of a new procedure to accomplish 
the mentioned goal. In order to work effectively, however, 
the user needs to explicitly indicate when the subprocedure 
is completed (e.g., “We’re done here” or “We’re done find-
ing the zip code”). This requirement may not be completely 
natural, but we have found anecdotally that it is easy to 
pick up and remains intuitive. 

Learning Iteration 

Learning iterative procedures in one shot is a significant 
challenge for several reasons, including the fact that users 

Figure 4: Learning to find and fill a text field

Utterance Interpretation Key Features 

hotels -> Out-
put Parameter 
(list of hotels) 

- Bare plural 
- Object of information-
producing action “find” 

Let me 
show you 
how to find 
hotels near 
an address 

an address -> 
input parameter
of type address 

- Indefinite 
- No deictic action 

Put hotels 
here

hotels -> con-
stant 

- Bare plural 
- Identical to the text 
typed in the user action 

Put the zip 
code here 

the zip code -> 
function on 
address pa-
rameter 

- Definite reference 
- Ontology (zip code is 
role of address) 

Figure 5: Interpreting Noun Phrases 
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• Project homepage:
http://www.cs.rochester.edu/research/cisd/projects/plow/

• Language processing with the TRIPS parser:
http://www.cs.rochester.edu/research/cisd/projects/trips/parser/cgi/

web-parser-xml.cgi
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Learning new rules and generalizations

• Learning rules of the form ‘If A, then B, else C’ is a challenge
because the latent variable A is generally not observed. Rather, one
sees only B or C.

• In an interactive, instructional setting, one needn’t rely entirely on
abduction or probabilistic inference: users generally state the
needed rules during their interactions.
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Language-based principles

1
The user’s actions ground
the parsed language.
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2 The DOM structure grounds the user’s indexicals and other
referential devices.

• Put the name here. (user clicks on the DOM element)
• This is the ISBN number. (user highlights some text)
• Find another tab. (user has selected a tab)

3 Indefinites mark new information; definites refer to established
information:

• A man walked in. He/The man looked tired.
• an address ⇒ new input parameter
• the address ⇒ existing input parameter
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Interaction and error correction

• PLOW is tested with human users in real scenarios. (It has been
used by the US Military Health System to set up doctor’s
appointments.)

• Thus, PLOW tries to immediately apply the rules it infers, so that the
user will correct it. This helps with:

• finding the right level of generalization; and
• overcoming noise in the context (from poor HTML mark-up)
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Evaluation
16 independent evaluators trained on PLOW and three other systems.

Phase 1
1 The evaluators taught the systems some predefined tasks.

2 The system then performed those tasks with different input
parameters.

Phase 2
1 The evaluators used the

systems to teach some of the
tasks at right.

2 PLOW received the highest
average score of all systems.

3 Evaluators had free choice of
which system to use. 13 chose
PLOW for at least one task, and
PLOW was chosen for 30 of the
55 evaluation tasks.

• Identifying the boundaries of iterative loops: is an ob-
served action the start of a loop, a normal step, or the 
end of a loop? 

• Loop termination conditions: what is the condition that 
caused the termination of the loop? 

• Hierarchical structure: what subtasks were performed 
in the demonstration? 

• Task goals: what is the end goal of the task? 

In all these cases, the user frequently provides exactly the 
information that is needed in their running play-by-play. 
By combining language understanding and learning from 
examples, PLOW can identify intended procedures from 
just a single demonstration. 

To give an idea of what tasks we are trying to learn, Figure 
1 shows ten questions that were used in the system evalua-
tion. The tasks were designed by an outside group and un-
known to the developers prior to the test. We will discuss 
how well the system did later in the paper.

The PLOW System 

While language greatly enhances the training, this is not to 
say that task learning becomes easy to accomplish. To cre-
ate an effective learning system, we need to integrate deep 
language understanding, reasoning, dialogue and machine 
learning, integrated within a collaborative agent architec-
ture. This section gives a brief overview of the system. 

The Interface 

PLOW learns tasks that can be performed within a web 
browser. These are typically information management 
tasks, e.g., finding appropriate sources, retrieving informa-
tion, filing requisitions, booking flights, and purchasing 
things. Figure 2 shows PLOW’s user interface. The main 
window on the left shows the Mozilla browser, instru-
mented so that PLOW can monitor user actions.  On the 
right is the procedure that PLOW has learned so far, sum-
marized back in language from the task model using the 
system’s language generation capabilities. Across the bot-
tom is a chat window that shows the most recent interac-

tions. The user can switch between speech and keyboard 
throughout the interaction.

The Agent Architecture 

A high-level view of the PLOW agent architecture is 
shown in Figure 3. The understanding components com-
bine natural language (speech or keyboard) with the ob-
served user actions on the GUI. After full parsing, seman-
tic interpretation and discourse interpretation produce plau-
sible intended actions. These are passed to the collabora-
tive problem solving (CPS) agent, which settles on the 
most likely intended interpretation given the current prob-
lem solving context. Depending on the actions, the CPS 
agent then drives other parts of the system. For example, if 
the recognized user action is to demonstrate the next step 
in the task, the CPS agent invokes task learning, which if 
successful will update the task models in the knowledge 
base. If, on the other hand, the recognized user intent is to 
request the execution of a (sub)task, the CPS agent at-
tempts to look up a task that can accomplish this action in 
the knowledge base. It then invokes the execution system 
to perform the task. During collaborative learning, the sys-
tem may actually do both – it may learn a new step in the 
task being learned, but because it already knows how to do 
the subtask, it also performs that subtask for the user. This 
type of collaborative execution while learning is critical in 
enabling the learning of iterative steps without requiring 
the user to tediously demonstrate each loop through the 
iteration. 

Language Processing 

Language understanding and dialogue management is ac-
complished using the TRIPS system (for details, see Allen 
et al. 2001, Ferguson & Allen 1998), which provides the 
architecture and domain-independent capabilities for sup-
porting dialogue-based, mixed-initiative problem solving 
in a range of different applications and domains.  Its cen-

Figure 1: Previously unseen tasks used in the evaluation 

Figure 2: The PLOW Interface 

1. What <businesses> are within <distance> of <address>?
2. Get directions for <integer> number of restaurants 

within <distance> of <address>. 
3. Find articles related to <topic> written for <project>. 
4. Which <project> had the greatest travel expenses be-

tween <start date> and <end date>? 
5. What is the most expensive purchase approved between 

<start date> and <end date>? 
6. For what reason did <person> travel for <project> be-

tween <start date> and <end date>? 
7. Find <ground-transport, parking> information for <air-

port>. 
8. Who should have been notified that <person> was out of

the office between <start date> and <end date>? 
9. Summarize all travel and purchase costs for <project> 

between <date> and <date> by expense category  
10. Which projects exceeded the current government maxi-

mum allowable expense for travel costs? 
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Markov Decision Processes (MDPs)

• The agent has complete knowledge of the environment and its own
current state, but the effects of its actions are non-deterministic.

• MDPs were developed starting in the 1950s by Richard Bellman
(1957), Ronald Howard (1960), Karl Åström (1965), Edward Sondik
(1971), Richard Sutton (1988), and others. Most of this work
concerns efficiently finding the agent’s optimal action.

• Howard (1978) describes one of the earliest applications:
programming the Sears, Roebuck, and Co.’s giant Addressograph
mechanical computer to optimize the process of choosing which
customers to send which catalogues (late 1950s): “The optimum
policy was confirmed by applying it to [. . . ] a selected set of
customers whose purchases were very carefully monitored. When
the policy was later implemented on the full customer set, the results
closely confirmed the model predictions” (p. 100).
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Defined

Definition (MDP)
1 S is a finite set of states.
2 A is a finite set of actions.
3 R : (S × A) 7→ R is the reward function.
4 T : (S × A × S) 7→ [0, 1] is the state transition function.

Example
Cab driver Ron serves towns A and B. He has two actions: cruise for
fares or wait at a cab stand.

cruise A B

A 0.9 0.1
B 0.1 0.9

(a) T for cruising around

stand A B

A 0.4 0.6
B 0.6 0.4

(b) T for the cab stand

A B

cruise $8 $20
stand $5 $22

(c) R

Table: Optimizing Ron’s plans based on his data.
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Optimization
Definition (Bellman operator for MDPs)

Define B0(s) = 0 for all s ∈ S. Then for all t > 0:

Bt (s, a) = R(s, a) + γ
∑
s′∈S

T(s, a, s′)Bt−1(s′)

where 0 < γ 6 1 is a discounting term (a dollar today is worth more than
a dollar tomorrow).

ValueIteration(S,A ,R ,T , γ, ε)

1 V(s) = 0,V ′(s) = 0 for all s ∈ S
2 while True
3 for s ∈ S

# argmax for policy too:

4 V ′(s) = maxa∈A [R(s, a) + γ
∑

s′∈S T(s, a, s′)V(s′)]
5 if |V ′(s) − V(s)| < ε for all s ∈ S
6 return V ′

7 else V = V ′
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Optimal planning under uncertainty

Example
Cab driver Ron serves towns A and B. He has two actions: cruise for
fares or wait at a cab stand.

cruise A B

A 0.9 0.1
B 0.1 0.9

(a) T for cruising around

stand A B

A 0.4 0.6
B 0.6 0.4

(b) T for the cab stand

A B

cruise $8 $20
stand $5 $22

(c) R

A 7→ stand B 7→ cruise
(d) Optimal policy

Table: Optimizing Ron’s plans based on his data.
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A simple robot controller (Russell and Norvig 2003:§17)

up
0.1 0.1

0.8
down0.1 0.1

0.8

left0.8

0.1

0.1

right 0.8

0.1

0.1

Figure: Action-specific state transitions
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(a) Optimal policy when the reward
(penalty) for being in a blank square is
−0.04.

↑

↑

→

→

→

↑

↑

→

←

−1

+1

(b) Optimal policy when the reward
(penalty) for being in a blank square is
−0.3.

Figure: Optimality for different reward functions.
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Vogel and Jurafsky (2010)

• Agents that learn to follow naviational instructions on maps.

• MDP formulation with online reinforcement learning.

• Inspiring idea: feature functions φ(s, a) and associated learned
weights, to process unknown utterances, landmarks, etc.

• Inspiring idea: learning probabilistic word meanings from the
interaction of language, the world, and the rewards.

• Limitations begin to show us the need for more complex agents.
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The Edinburgh Map Corpus (Thompson et al. 1993)
One participant tells the other how to reproduce a path through a map.

g right it starts directly above the crest falls if you go
to the left of your page just to the edge of the crest
falls

f mmhmm
g come south due south to the bottom of the page
f mmhmm

g go to the left of the page to about an inch from the
end

f over the banana tree
g i suppose so yeah eh
f mmhmm

g go north to the level of the footbridge
f mmhmm

g go up and go across the footbridge and stop
exactl– right at the end edge of the footbridge

f above the footbridge
g o– over the footbridge
f mm

g and stop right at the end of it
g there is a poisoned stream on mine but which you

don’t have
.
.
.

Transcripts, audio, maps, etc.: http://groups.inf.ed.ac.uk/maptask/
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MDP formulation and learning

1 S: a set of s = (u, l, c) triples:

• A set of utterances u
• A set of landmarks l
• c ∈ {North, South, East, West}

2 A : (l, c), meaning pass l on side c

3 R
(
(u, l, c), (l′, c′)

)
=

 I[l = l′] +
I[c = c′] +
sim(u, l′)


4 T(s, a) = s′

5 φ(s, a) ∈ Rn capturing world and linguistic
information
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above, below, under, underneath, over, bottom,
top, up, down, left, right, north, south, east, west,
on

Table 1: The list of given spatial terms.

• Coherence: The number of words w � u that
occur in the name of l�

• Landmark Locality: Binary feature indicat-
ing if l� is the closest landmark to l

• Direction Locality: Binary feature indicat-
ing if cardinal direction c� is the side of l�

closest to (l, c)

• Null Action: Binary feature indicating if l� =
NULL

• Allocentric Spatial: Binary feature which
conjoins the side c we pass the landmark on
with each spatial term w � u. This allows us
to capture that the word above tends to indi-
cate passing to the north of the landmark.

• Egocentric Spatial: Binary feature which
conjoins the cardinal direction we move in
with each spatial term w � u. For instance, if
(l, c) is above (l�, c�), the direction from our
current position is south. We conjoin this di-
rection with each spatial term, giving binary
features such as “the word down appears in
the utterance and we move to the south”.

5 Approximate Dynamic Programming

Given this feature representation, our problem is
to find a parameter vector � � RK for which
Q(s, a) = �T�(s, a) most closely approximates
E[R(s, a)]. To learn these weights � we use
SARSA (Sutton and Barto, 1998), an online learn-
ing algorithm similar to Q-learning (Watkins and
Dayan, 1992).

Algorithm 1 details the learning algorithm,
which we follow here. We iterate over training
documents d � D. In a given state st, we act ac-
cording to a probabilistic policy defined in terms
of the Q function. After every transition we up-
date �, which changes how we act in subsequent
steps.

Exploration is a key issue in any RL algorithm.
If we act greedily with respect to our current Q
function, we might never visit states which are ac-

Input: Dialog set D
Reward function R
Feature function �
Transition function T
Learning rate �t

Output: Feature weights �
1 Initialize � to small random values
2 until � converges do
3 foreach Dialog d � D do
4 Initialize s0 = (l1, u1, �),

a0 � Pr(a0|s0; �)
5 for t = 0; st non-terminal; t++ do
6 Act: st+1 = T (st, at)
7 Decide: at+1 � Pr(at+1|st+1; �)
8 Update:
9 � � R(st, at) + �T�(st+1, at+1)

10 � �T�(st, at)
11 � � � + �t�(st, at)�

12 end
13 end
14 end
15 return �

Algorithm 1: The SARSA learning algorithm.

tually higher in value. We utilize Boltzmann ex-
ploration, for which

Pr(at|st; �) =
exp( 1

� �
T�(st, at))�

a� exp( 1
� �

T�(st, a�))
(5)

The parameter � is referred to as the tempera-
ture, with a higher temperature causing more ex-
ploration, and a lower temperature causing more
exploitation. In our experiments � = 2.

Acting with this exploration policy, we iterate
through the training dialogs, updating our fea-
ture weights � as we go. The update step looks
at two successive state transitions. Suppose we
are in state st, execute action at, receive reward
rt = R(st, at), transition to state st+1, and there
choose action at+1. The variables of interest are
(st, at, rt, st+1, at+1), which motivates the name
SARSA.

Our current estimate of the Q function is
Q(s, a) = �T�(s, a). By the Bellman equation,
for the true Q function

Q(st, at) = R(st, at) + max
a�

Q(st+1, a
�) (6)

After each action, we want to move � to minimize
the temporal difference,

R(st, at) + Q(st+1, at+1) � Q(st, at) (7)
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Learned paths

Map 4g Map 10g

Figure 4: Sample output from the SARSA policy. The dashed black line is the reference path and the
solid red line is the path the system follows.

For each feature �i(st, at), we change �i propor-
tional to this temporal difference, tempered by a
learning rate �t. We update � according to

� = �+�t�(st, at)(R(st, at)

+ �T�(st+1, at+1) � �T�(st, at)) (8)

Here �t is the learning rate, which decays over
time4. In our case, �t = 10

10+t , which was tuned on
the training set. We determine convergence of the
algorithm by examining the magnitude of updates
to �. We stop the algorithm when

||�t+1 � �t||� < � (9)

6 Experimental Design

We evaluate our system on the Map Task corpus,
splitting the corpus into 96 training dialogs and 32
test dialogs. The whole corpus consists of approx-
imately 105,000 word tokens. The maps seen at
test time do not occur in the training set, but some
of the human participants are present in both.

4To guarantee convergence, we require
P

t �t = � andP
t �

2
t < �. Intuitively, the sum diverging guarantees we

can still learn arbitrarily far into the future, and the sum of
squares converging guarantees that our updates will converge
at some point.

6.1 Evaluation

We evaluate how closely the path P generated by
our system follows the expert path Pe. We mea-
sure this with respect to two metrics: the order
in which we visit landmarks and the side we pass
them on.

To determine the order Pe visits landmarks we
compute the minimum distance from Pe to each
landmark, and threshold it at a fixed value.

To score path P , we compare the order it visits
landmarks to the expert path. A transition l � l�

which occurs in P counts as correct if the same
transition occurs in Pe. Let |P | be the number
of landmark transitions in a path P , and N the
number of correct transitions in P . We define the
order precision as N/|P |, and the order recall as
N/|Pe|.

We also evaluate how well we are at passing
landmarks on the correct side. We calculate the
distance of Pe to each side of the landmark, con-
sidering the path to visit a side of the landmark
if the distance is below a threshold. This means
that a path might be considered to visit multiple
sides of a landmark, although in practice it is usu-
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Learned meanings

Figure 5: This figure shows the relative weights of spatial features organized by spatial word. The top
row shows the weights of allocentric (landmark-centered) features. For example, the top left figure shows
that when the word above occurs, our policy prefers to go to the north of the target landmark. The bottom
row shows the weights of egocentric (absolute) spatial features. The bottom left figure shows that given
the word above, our policy prefers to move in a southerly cardinal direction.

ally one. If C is the number of landmarks we pass
on the correct side, define the side precision as
C/|P |, and the side recall as C/|Pe|.

6.2 Comparison Systems

The baseline policy simply visits the closest land-
mark at each step, taking the side of the landmark
which is closest. It pays no attention to the direc-
tion language.

We also compare against the policy gradient
learning algorithm of Branavan et al. (2009). They
parametrize a probabilistic policy Pr(s|a; �) as a
log-linear model, in a similar fashion to our explo-
ration policy. During training, the learning algo-
rithm adjusts the weights � according to the gradi-
ent of the value function defined by this distribu-
tion.

Reinforcement learning algorithms can be clas-
sified into value based and policy based. Value
methods estimate a value function V for each
state, then act greedily with respect to it. Pol-
icy learning algorithms directly search through
the space of policies. SARSA is a value based
method, and the policy gradient algorithm is pol-
icy based.

Visit Order Side
P R F1 P R F1

Baseline 28.4 37.2 32.2 46.1 60.3 52.2
PG 31.1 43.9 36.4 49.5 69.9 57.9

SARSA 45.7 51.0 48.2 58.0 64.7 61.2

Table 2: Experimental results. Visit order shows
how well we follow the order in which the answer
path visits landmarks. ‘Side’ shows how success-
fully we pass on the correct side of landmarks.

7 Results

Table 2 details the quantitative performance of the
different algorithms. Both SARSA and the policy
gradient method outperform the baseline, but still
fall significantly short of expert performance. The
baseline policy performs surprisingly well, espe-
cially at selecting the correct side to visit a land-
mark.

The disparity between learning approaches and
gold standard performance can be attributed to
several factors. The language in this corpus is con-
versational, frequently ungrammatical, and con-
tains troublesome aspects of dialog such as con-
versational repairs and repetition. Secondly, our
action and feature space are relatively primitive,
and don’t capture the full range of spatial expres-
sion. Path descriptors, such as the difference be-
tween around and past are absent, and our feature
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The Cards Corpus

http://CardsCorpus.christopherpotts.net/

Included
• The transcripts in CSV format
• Python classes for working with the transcripts
• Examples of the Python classes in action
• R code for reading in the corpus as a data frame
• All the annotations used in the work described here

By the numbers
• 1,266 transcripts
• Game length mean: 373.21 actions (median 305, sd 215.20)
• Card pickup: 19,157
• Card drop: 12,325
• Move: 371,811
• Utterance: 45,805 (260,788 words, ≈4,000 word vocab)
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Amazon Mechanical Turk HIT (Human Intelligence Task)

• Title: Collaborative Search Game with Chat
• Description: Two-player collaborative video game involving

dialogue/chat with other Turkers.
• Payment: $1.00, and up to $0.50 cents for rich, collaborative

problem-solving using meaningful dialogue.
• Restrictions: US IP addresses; at least 95%. approval rating
• Timing: mid-week, 7:00 am – 3:00 pm Pacific time
• Turker Nation: posting on Turker Nation about our HIT and its goals,

responding to Turkers’ questions and concerns, and learning from
Turkers’ about what life is like for them.
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Amazon Mechanical Turk HIT (Human Intelligence Task)
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Amazon Mechanical Turk HIT (Human Intelligence Task)

You are on 2DYellow boxes mark cards 
in your line of sight.

Task description: Six 
consecutive cards of 

the same suit

TYPE HERE

The cards you are holding Move with the arrow keys or 
these buttons.
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Amazon Mechanical Turk HIT (Human Intelligence Task)

Gather six consecutive cards of a particular suit (decide which
suit together), or determine that this is impossible. Each of you
can hold only three cards at a time, so you’ll have to coordinate
your efforts. You can talk all you want, but you can make only a
limited number of moves.

What’s going on?
⇓

Which suit should we pursue?
⇓

Which sequence should we pursue?
⇓

Where is card X?
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Transcripts: environment metadata

Agent Time Action type Contents

Server 0 COLLECTION SITE Amazon Mechanical Turk
Server 0 TASK COMPLETED 2010-06-17 10:10:53 EDT
Server 0 PLAYER 1 A00048
Server 0 PLAYER 2 A00069
Server 2 P1 MAX LINEOFSIGHT 3
Server 2 P2 MAX LINEOFSIGHT 3
Server 2 P1 MAX CARDS 3
Server 2 P2 MAX CARDS 3
Server 2 P1 MAX TURNS 200
Server 2 P2 MAX TURNS 200
Server 2 GOAL DESCRIPTION Gather six consecutive cards ...
Server 2 CREATE ENVIRONMENT [ASCII representation]
Player 1 2092 PLAYER INITIAL LOCATION 16,15
Player 2 2732 PLAYER INITIAL LOCATION 9,10
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Transcripts: environment metadata

-----------------------;
- -;
- ---------- --- -;
- - - - -;
- --- ------ - -;
- --- - -;
- b - - - -;
- --- - --- -;
- - --- - -;
- - - b --- -;
- - - - - -;
- - - - - -;
- - ----- - - - -;
- - - - -;
- --- b--------- -;
- -;
-------- --------------;

NEW_SECTION
1,2:2D;1,7:KH;1,7:9S;1,11:6C;1,13:QC;1,14:QS;
2,18:3H;2,18:9H;
3,19:4H;4,8:AC;4,19:3D;
4,19:KD;
5,14:QH;5,15:5S;5,15:2S;5,16:4D;5,16:10C;5,18:4S;
6,11:KC;6,15:9C;
7,11:2H;7,13:7S;
8,2:QD;8,4:AD;8,11:JC;8,20:8S;
9,9:10S;9,9:6H;9,9:8C;9,10:7H;9,14:JS;
10,1:2C;10,10:8D;11,14:6D;11,14:10H;
11,18:4C;11,18:9D;
12,10:3S;12,12:6S;12,16:5H;12,16:JD;12,20:3C;
13,4:5C;13,4:JH;13,15:KS;
14,2:5D;14,20:10D;15,2:AH;
15,13:7D;15,15:8H;15,17:AS;15,20:7C;
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Transcripts: game play

Agent Time Action type Contents

Player 1 566650 PLAYER MOVE 7,11
Player 2 567771 CHAT MESSAGE PREFIX which c’s do you have again?
Player 1 576500 CHAT MESSAGE PREFIX i have a 5c and an 8c
Player 2 577907 CHAT MESSAGE PREFIX i jsut found a 4 of clubs
Player 1 581474 PLAYER PICKUP CARD 7,11:8C
Player 1 586098 PLAYER MOVE 7,10
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Novice strategy

Player 1: Hello. Are you here?
Player 2: yes
Player 2: do you see any cards
Player 1: Yes. I see a yellow spot. Those are our cards. We’ll only be able to

see the ones that are in our view
Player 1: until we move with our arrows.
Player 2: i see 3 of them
Player 1: We only have a certain number of moves, so we should decide how we’re

going to do this before we use them, do you think?
Player 2: sure
Player 1: Ok. So, we have to pick up six cards of the same suit, in a row...
Player 1: each of us can hold three, so...
Player 1: I think I should get my three, then you should get your three or vice

versa
Player 2: ok
Player 2: you go ahead
Player 1: What suit should we do?
Player 1: And which six cards do you want to try for?
Player 2: whatever you want
Player 1: I’m Courtney, by the way- nice to meet you.
Player 2: i’m becky....nice to meet you too
Player 1: Hi Becky. How about we go for hearts? And take 234567

[...]
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Journeyman strategy

These players have explored and are now forming a strategy:

Player 1 I have 9 clubs and K clubs

Player 1 want to look for clubs?

Player 2 ok

[. . . ]

The players then find various clubs, checking with each other frequently, until they gain an
implicit understanding of which specific sequences to try for (either 8C-KC or 9C-AC):

Player 1 so you are holding Jc and Kc now?

Player 2 i now have 10d JC and KC

Player 2 yes

Player 1 drop 10d and look for either 8c or Ace of clubs
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Expert strategy

Player 2: hi

Player 1: hi--which side r u on?

Player 2: right side

Player 2: u?

Player 1: left/middle

Player 1: ok i gathered everything in my area

Player 2: i think i have all of them also

Player 1: how bout 5C - 10C?

Player 2: ok

Player 1: i have 5C, 8C, 9C, and you should have 6C, 7C, 10C

Player 2: got them
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Asymmetric play

Player 1: very limited number of moves but infinite line-of-sight; Player 2:
large number of moves but very limited line of sight.

Player 1: Hi

Player 2: hi where are you

Player 1: near the upper right

Player 2: ok any cards that way

Player 1: lots of cards near me to the upper right corner

Player 2: did you get that

Player 1: get wjat ?

Player 2: the drop in the top right

Player 1: I have not gone there yet

Player 2: ok I’ll wait

Player 2: we have the 4 8 j h

Player 2: 3 k c

Player 1: ok

Player 1: the cards are pretty scattered

Player 1: did you check the entire right column?

.

.

.
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Language in context

Each transcript is a data structure that is intuitively a list of
temporally-ordered states (

context, event
)

The context includes
• local information (the state of play at that point)
• historical information (the events up to that point)
• global information (limitations of the game, the task, etc.)

When the event is an utterance, we can interpret it in context.

This is what pragmatics is all about, but it is very rare to have a dataset
that truly lets you do it.
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Task-oriented dialogue corpora

Corpus Task type Domain Task-orient. Docs. Format

Switchboard discussion open very loose 2,400 aud/txt
SCARE search 3d world tight 15 aud/vid/txt
TRAINS routes map tight 120 aud/txt
Map Task routes map tight 128 aud/vid/txt
Columbia Games games maps tight 12 aud/txt
Cards search 2d grid tight 1,266 txt in context

Chief selling points for Cards:
• Pretty large.
• Controlled enough that similar things happen often.
• Very highly structured — the only corpus whose release version

allows the user to replay all games with perfect fidelity.
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Papers using the Cards corpus

• Djalali et al. (2012): anapora and domain restriction

• Djalali et al. (2011): presuppositions

• Potts (2012): goal-orientation of underspecified locative expressions

• Vogel et al. (2013a): emergent Gricean behavior with Dec-POMDPs

• Vogel et al. (2013b): conversational implicature with Dec-POMDPs
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POMDPs and approximate Dec-POMDPs

We want our agent to:

• Make moves that are likely to lead it to the card.
• Change its behavior based on observations it receives.
• Respond to locative advice from the other player.
• Give locative advice to the other player.

Modeling the problem as a POMDP allows us to train agents that have
these properties.
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Simplified cards scenario

Both players must find the ace of spades. DialogBot:
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Grounded language interpretation

“in the bottom you see the
opening on the bottom row”

⇓

BOARD(entrance & bottom); H : 5.48

“in the top right of the
middle part of the board”

⇓

middle(top & right); H : 5.27

“i’m in the center”
⇓

BOARD(middle); H : 7.37

Utterances as bags of words. No preprocessing (yet) for spelling
correction, lemmatization, etc. Assign semantic tags using log-linear
classifiers trained on the corpus data.
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POMDPs
The agent has only probabilistic information about its current state (and
the effects of its actions are non-deterministic, as in MDPs).

Definition (POMDP)
A POMDP is a structure (S,A ,R ,T ,Ω,O):
• (S,A ,R ,T) is an MDP.
• Ω is a finite set of observations.
• O : (A × S × Ω) 7→ [0, 1] is the observation function.
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ListenerBot (a POMDP agent)

• S: all combinations of the player’s region and the card’s region
• b0: initial belief state (distribution over S)
• A : travel actions for each region, and a single search action
• Ω: {AS seen, AS not seen}
• Σ: a set of messages, treated as observations; each message σ

denotes a distribution P(s | σ) over states s. We apply Bayes rule to
incorporate these into the POMDP observations.

• T : distributions P(s′ | s, a), except travel actions fail between
nonadjacent regions

• O : distributions P(o | s, a); travel actions never return positive
observations; search actions return positive observations only if the
player’s current region contains the AS

• R: small negative for not being on the card, large positive for being
on it. No sensitivity to the other player.
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Optimization

A belief state for (S,A ,R ,T ,Ω,O) is a probability distribution b over S.

P(s, a, o, b) = O(s, a, o)
∑
s′∈S

T(s′, a, s)b(s′) (1)

ba
o (s) =

P(s, a, o, b)∑
s′∈S P(s′, a, o, b)

(2)

Definition (Bellman operator for POMDPs)
Let b be a belief state for (S,A ,R ,T ,Ω,O). Set P0(b ′) = 0 for all belief
states b ′. Then for all t > 0:

Pt (b , a) =

∑
s∈S

b(s)R(s, a)

 + γ
∑
o∈Ω

∑
s∈S

P(s, a, o, b)

Pt−1(ba
o )

where 0 < γ 6 1 is a discounting term.
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Approximate solutions take us (only) part of the way

• An exact solution specifies the value of every action at any
reachable belief state.

• In practice, only approximate solutions are tractable. We used the
PERSEUS solution algorithm.

• Even approximate solutions are generally only possible for problems
with < 10K states.

Card location Agent location Partner location Partner’s card beliefs
231 × 231 × 231 × 231

≈ 50K ≈12M ≈3B

Table: Size of the state-space for the one-card game.
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Language as a representation for planning

• Divide the board up into n regions, for some tractable n
• Generate this partition using our locative phrase distributions.
• k -means clustering in locative phrase space.
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Clusters induced

Figure: 12-cell clustering.
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Clusters induced

Figure: 14-cell clustering.
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Clusters induced

Figure: 16-cell clustering.
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Clusters induced

Figure: 18-cell clustering.
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ListenerBot example

ListenerBot:

“it’s on the left side”
⇓

board(left)
⇓
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DialogBot (an approximate Dec-POMDP)

DialogBot is a strict extension of ListenerBot:

• The set of states is now all combinations of
• both players’ positions
• the card’s region
• the region the other player believes the card to be in

• The set of actions now includes dialog actions.
• (The player assumes that) a dialog action U alters the other player’s

beliefs in the same way that U would impact his own beliefs.
• Same basic reward structure as for Listenerbot, except now also

sensitive to whether the other player has found the card.

59 / 69



Overview & motivations SwDA PLOW MDPs & grounded semantics The Cards Corpus POMDPs & approximate Dec-POMDPs Refs.

Belief-state approximation

b̄t

b̄o1
t+1

o1

b̄o2
t+1

o2

b̄o1,o1
t+2

o1

b̄o1,o2
t+2

o2

b̄o2,o1
t+2

o1

b̄o2,o2
t+2

o2

(a) Exact multi-agent belief tracking

b̄t
o1

o2
o1

o2

b̄t+1
o1

o2
o1

o2

b̄t+2

(b) Approximate multi-agent belief tracking

Figure 4: Exact multi-agent belief tracking compared with our approximate approach. Each node represents
a belief state. In exact tracking (a), the agent tracks every possible history of observations that its partner
could have received, which grows exponentially in time. In approximate update (b), the agent considers each
possible observation and then averages the resulting belief states, weighted by the probability the other agent
received that observation, resulting in a single summary belief state b̄t+1. Under the QMDP approximation,
the agent considers what action the other agent would have taken if it completely believed the world was in
a certain state. Thus, there are four belief states resulting from b̄t , as opposed to two in the exact case.

1 �s̄� �= s̄. This approach to managing contradiction
is analogous to logical belief revision (Alchourronón
et al., 1985; Gärdenfors, 1988; Fermé and Hansson,
2011).

Speech Actions Speech actions are modeled by
how they change the beliefs of the other agent.
The effects of a speech actions are modeled in
T̄ (s̄�|s�,a,(s, s̄)), our model of how ListenerBot’s be-
liefs change. For a speech action a = say(�) with
� � �,

T̄ (s̄�|s�,a,(s, s̄)) =

�̄
o�O

�
�(ō|s̄�,a, �̄(s̄))Pr(� |s̄�)T (s̄�|a, �̄(s̄), s̄)

�s̄�� �(ō|s̄��,a, �̄(s̄))Pr(� |s̄��)T (s̄��|a, �̄(s̄), s̄)

��(ō|s�,a, �̄(s̄))
�

DialogBot is equipped with the five most
frequent speech actions: BOARD(middle),
BOARD(top), BOARD(bottom), BOARD(left),
and BOARD(right). It produces concrete utterances
by selecting a sentence from the training corpus
with the desired semantics.

Reward DialogBot receives a large reward when
both it and its partner are located on the card, and a
negative cost when moving or speaking:

R((p,c, p̄, c̄),a) =

�
R+ p = c� p̄ = c
R� p �= c� p̄ �= c

DialogBot’s reward is not dependent on the beliefs
of the other player, only the true underlying state of
the world.

6 Experimental Results

We now experimentally evaluate our semantic clas-
sifiers and the agents’ task performance.

6.1 Spatial Semantics Classifiers

We report the performance of our spatial seman-
tics classifiers, although their accuracy is not the fo-
cus of this paper. We use 10-fold cross validation
on a corpus of 577 annotated utterances. We used
simple bag-of-words features, so overfitting the data
with cross validation is not a pressing concern. Of
the 577 utterances, our classifiers perfectly labeled
325 (56.3% accuracy). The classifiers correctly pre-
dicted the domain � of 515 (89.3%) utterances. The
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How the agents relate to each other

s s0

o o0a

R

(a) ListenerBot POMDP

s s0

o1 o01

o2 o02

a1

a2

R

(b) Full Dec-POMDP

s s0

o o0a

R

s̄ s̄0

(c) DialogBot POMDP

Figure 3: The decision diagram for the ListenerBot POMDP, the full Dec-POMDP, and the DialogBot ap-
proximation POMDP. The ListenerBot (a) only considers his own location p and the card location c. In the
full Dec-POMDP (b), both agents receive individual observations and choose actions independently. Opti-
mal decision making requires tracking all possible histories of beliefs of the other agent. In diagram (c), Di-
alogBot approximates the full Dec-POMDP as single-agent POMDP. At each time step, DialogBot marginal-
izes out the possible observations ō that ListenerBot received, yielding an expected belief state b̄.

Initial Belief State The initial belief state, b0 2
D(S), is a distribution over the state space S. Lis-
tenerBot begins each game with a known initial lo-
cation p0 but a uniform distribution over the location
of the card c:

b0(p,c) =

(
1

Nregions
p = p0

0 otherwise

Belief Update and Decision Making The key de-
cision making problem in POMDPs is the construc-
tion of a policy p : D(S)! A, a function from beliefs
to actions which dictates how the agent acts. Deci-
sion making in POMDPs proceeds as follows. The
world starts in a hidden state s0 ⇠ b0. The agent
executes action a0 = p(b0). The underlying hid-
den world state transitions to s1 ⇠ T (s0|a0,s0), the
world generates observation o0 ⇠ W(o|s1,a0), and
the agent receives reward R(s0,a0). Using the obser-
vation o0, the agent constructs a new belief b1 2D(S)
using Bayes’ rule:

bat ,ot
t+1 (s0) = Pr(s0|at ,ot ,bt)

=
Pr(ot |at ,s0,bt)Pr(s0|at ,bt)

Pr(ot |bt ,at)

=
W(ot |s0,at)Âs2S T (s0|at ,s)bt(s)

Âs00 W(ot |s00,at)Âs2S T (s00|at ,s)bt(s)
This process is referred to as belief update and is
analogous to the forward algorithm in HMMs. To in-
corporate communication into the standard POMDP

model, we consider observations (o,s) 2 O ⇥ S
which are a combination of a perceptual observation
o and a received message s . The semantics of the
message s is included in the belief update equation
using Pr(s|s), derived in Equation 1:

ba,o,s (s0) =

W(o|s0,a) Pr(s0|s)Pr(s)
Âs 02S Pr(s0|s 0)Pr(s 0) Âs2S T (s0|a,s)b(s)

Âs002S W(o|s00,a) Pr(s00|s)Pr(s)
Âs 02S Pr(s00|s 0)Pr(s 0) Âs2S T (s00|a,s)b(s)

Using this new belief state b1, the agent selects an
action a1 = p(b1), and the process continues. An
initial belief state b0 and a policy p together define
a Markov chain over pairs of states and actions.

For a given policy p , we define a value function
V p : D(S) ! R which represents the expected dis-
counted reward with respect to that Markov chain:

V p(b0) =
•

Â
t=0

g t E[R(bt ,at)|b0,p]

The goal of the agent is find a policy p⇤ which max-
imizes the value of the initial belief state:

p⇤ = argmax
p

V p(b0)

Exact computation of p⇤ is PSPACE-complete (Pa-
padimitriou and Tsitsiklis, 1987), making approx-
imation algorithms necessary for all but the sim-
plest problems. We use Perseus (Spaan and Vlassis,
2005), an anytime approximate point-based value it-
eration algorithm.

Figure: In the full Dec-POMDP (b), both agents receive individual observations
and choose actions independently. Optimal decision making requires tracking all
possible histories of beliefs of the other agent. DialogBot approximates the full
Dec-POMDP as single-agent POMDP. At each time step, DialogBot marginalizes
out the possible observations ō that ListenerBot received, yielding an expected
belief state b̄.
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DialogBot and ListenerBot play together

Dialogbot: “Top”

DialogBot beliefs ListenerBot beliefs

DialogBot beliefs:
ListenerBot’s position

DialogBot beliefs:
ListenerBot’s beliefs
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Grown-up DialogBots (a week of policy exploration)
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Baby DialogBots (a few hours of policy exploration)
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Experimental results

Agents Success Average Moves

ListenerBot & ListenerBot 84.4% 19.8
ListenerBot & DialogBot 87.2% 17.5
DialogBot & DialogBot 90.6% 16.6

Table: The evaluation for each combination of agents. 500 random initial states
per agent combination. It pays to model other minds!
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Emergent pragmatics

Quality
• The Gricean maxim of quality says roughly “Be truthful”.
• For DialogBot, this emerges from the decision problem: false

information is (typically) more costly.
• DialogBot would lie if he thought it would move them toward the

objective.

Quantity and Relevance
• The Gricean maxims of quantity and relevance for informative, timely

contributions.
• When DialogBot finds the card, he communicates the information,

not because he is hard-coded to do so, but rather because it will
help the other player find it.

66 / 69



Overview & motivations SwDA PLOW MDPs & grounded semantics The Cards Corpus POMDPs & approximate Dec-POMDPs Refs.

References I
Allen, James F. 1991. Reasoning About Plans. San Francisco: Morgan Kaufmann.
Allen, James F.; Nathanael Chambers; George Ferguson; Lucian Galescu; Hyuckchul Jung; Mary Swift; and William Taysom. 2007. PLOW: A

collaborative task learning agent. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 1514–1519. Vancouver,
British Columbia, Canada: AAAI Press.
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